Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 3, pp 1101–1113 | Cite as

Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds

  • J. Cortez
  • E. Vorobieva
  • D. Gralheira
  • I. Osório
  • L. Soares
  • N. Vale
  • E. Pereira
  • P. Gomes
  • R. Franco
Research Paper

Abstract

Bionanoconjugates of the enzyme tyrosinase (TYR) and gold nanoparticles (AuNPs) functionalised with a peptide (CALNN) were produced in solution and characterised. The formation of stable TYR–AuNP:CALNN bionanoconjugates (BNCs) was supported by a decrease of the surface charge of the BNCs as determined by ζ-potential and an increase in hydrodynamic diameter as determined by Dynamic Light Scattering (DLS). UV/Vis studies of pH-induced aggregation revealed distinct protonation patterns for the BNCs when compared with AuNP:CALNN alone, further substantiating BNC formation. Activity studies of the BNCs for the reduction of di-phenols in solution indicated that TYR not only remains active after conjugation, but interestingly its activity in the BNCs is higher than for the free enzyme. In conclusion, AuNP:CALNN can provide a suitable platform for the immobilisation of TYR, leading to BNCs with increased enzyme activity and a wider pH working range, with promising uses in electrochemical biosensors for the detection of mono- and di-phenolic compounds.

Keywords

Tyrosinase Gold nanoparticle Bionanoconjugate Biosensor Environmental pollutants 

References

  1. Abdullah J, Ahmad M, Karuppiah N, Heng LY, Sidek H (2006) Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens Actuators B Chem 114:604–609CrossRefGoogle Scholar
  2. Baptista P, Doria G, Henriques D, Pereira E, Franco R (2005) Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 119:111–117CrossRefGoogle Scholar
  3. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391(3):943–950CrossRefGoogle Scholar
  4. Baron R, Willner B, Willner I (2007) Biomolecule–nanoparticle hybrids as functional units for nanobiotechnology. Chem Commun 28:323–332CrossRefGoogle Scholar
  5. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307CrossRefGoogle Scholar
  6. Dzyadevych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon JM, Georgiou CA, Martelet C, Jaffrezic-Renault N (2005) Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens Actuators B Chem 105:81–87CrossRefGoogle Scholar
  7. Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int J Pept Protein Res 35:161–214CrossRefGoogle Scholar
  8. Gomes I, Santos NC, Oliveira LMA, Quintas A, Eaton P, Pereira E, Franco R (2008) Probing surface properties of cytochrome c at Au bionanoconjugates. J Phys Chem C 112:16340–16347CrossRefGoogle Scholar
  9. Hedenmo M, Narvaez A, Dominguez E, Katakis I (1997) Improved mediated tyrosinase amperometric enzyme electrodes. J Electroanal Chem 425:1–11CrossRefGoogle Scholar
  10. Huang M, Ho T, Lee C (1992) Phenolic compounds in food and their effects on health. Antioxidants and cancer prevention. ACS, WashingtonCrossRefGoogle Scholar
  11. Jolivet S, Arpin N, Wichers HJ, Pellon G (1998) Agaricus bisporus browning: a review. Mycol Res 102:1459–1483CrossRefGoogle Scholar
  12. Kaiser E, Colescot RL, Bossinge CD, Cook PI (1970) Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal Biochem 34:595–598CrossRefGoogle Scholar
  13. Kaufman E et al (2007) Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and zeta-potential measurements. Langmuir 23:6053–6062CrossRefGoogle Scholar
  14. Kim GY, Kang MS, Shim J, Moon SH (2008a) Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor. Sens Actuators B Chem 133:1–4CrossRefGoogle Scholar
  15. Kim GY, Shim J, Kang MS, Moon SH (2008b) Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level. J Environ Monitor 10:632–637CrossRefGoogle Scholar
  16. Kim GY, Shim J, Kang MS, Moon SH (2008c) Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples. J Hazard Mater 156:141–147CrossRefGoogle Scholar
  17. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707CrossRefGoogle Scholar
  18. Levy R (2006) Peptide-capped gold nanoparticles: towards artificial proteins. Chembiochem 7:1141–1145CrossRefGoogle Scholar
  19. Levy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) Rational and combinatorial design of peptide capping Ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084CrossRefGoogle Scholar
  20. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRefGoogle Scholar
  21. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866CrossRefGoogle Scholar
  22. Robb D (1984) Tyrosinase. In: Lontie R (ed) Copper proteins and copper enzymes, vol 2. CRC Press Inc., Boca Raton, pp 207–240Google Scholar
  23. Rodriguez-Lopez J, Tudela J, Varon R, Garcia-Carmona F, Garcia-Canovas F (1992) Analysis of a kinetic model for melanin biosynthesis pathway. J Biol Chem 267:3801–3810Google Scholar
  24. Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533–541CrossRefGoogle Scholar
  25. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens Bioelectron 22:3146–3153CrossRefGoogle Scholar
  26. Selinheimo E, Gasparetti C, Mattinen M, Steffensen C, Buchert J, Kruus K (2009) Comparison of substrate specificity of tyrosinases from Trichoderma reesei and Agaricus bisporus. Enzyme Microb Technol 44:1–10CrossRefGoogle Scholar
  27. Sfinchez-Ferrer A, Rodriguez-Lopez J, Garcia-Cfinovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11CrossRefGoogle Scholar
  28. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  29. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853CrossRefGoogle Scholar
  30. VanGelder CWG, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45:1309–1323CrossRefGoogle Scholar
  31. Vidal JC, Esteban S, Gil J, Castillo JR (2006) A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 68:791–799CrossRefGoogle Scholar
  32. Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sens Actuators B Chem 115:150–157CrossRefGoogle Scholar
  33. Wang SS (1973) Para-Alkoxybenzyl alcohol resin and para-Alkoxybenzyloxycarbonylhydrazide resin for solid-phase synthesis of protected peptide fragments. J Am Chem Soc 95:1328–1333Google Scholar
  34. Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852CrossRefGoogle Scholar
  35. You CC, Verma A, Rotello VM (2006) Engineering the nanoparticle-biomacromolecule interface. Soft Matter 2:190–204CrossRefGoogle Scholar
  36. Yu HH, Liu SQ, Ju HX (2003) Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens Bioelectron 19:509–514CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. Cortez
    • 1
  • E. Vorobieva
    • 1
  • D. Gralheira
    • 1
  • I. Osório
    • 1
  • L. Soares
    • 2
  • N. Vale
    • 3
  • E. Pereira
    • 2
  • P. Gomes
    • 3
  • R. Franco
    • 1
  1. 1.REQUIMTE, Departamento de QuímicaFaculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparicaPortugal
  2. 2.REQUIMTE, Departamento de Química e BioquímicaFaculdade de Ciências da Universidade do PortoPortoPortugal
  3. 3.CIQUP, Departamento de Química e BioquímicaFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations