Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 763–771 | Cite as

Superspin-glass like behavior of nanoparticle La0.7Ca0.3MnO3 obtained by mechanochemical milling

  • Vojislav Spasojevic
  • Ana Mrakovic
  • Marija Perovic
  • Vladan Kusigerski
  • Jovan Blanusa
Research Paper


Single-phase perovskite compound La0.7Ca0.3MnO3 was synthesised by a high-energy ball milling in a single step processing. Structure and morphology characterizations revealed nanoparticle nature of this mixed valent manganite with the average particle diameter of 9 nm. Comprehensive set of magnetic measurements showed that the system can be described as an ensemble of interacting magnetic nanoparticles where each particle possesses high magnetic moment, i.e., superspin. Furthermore, magnetic behavior showed contributions from both superspin-glass (SSG) and superparamagnetic (SP) states, and the prevailing properties depended on the experimental conditions. It was established that SSG state dominated in low magnetic fields up to 500 Oe while in higher applied fields suppression of collective behavior occurred and individual characteristics of nanoparticles prevailed. It was also concluded that the applied method of synthesis produced system with high magnetic anisotropy as well as with the large nanoparticle shell whose thickness amounts 30% of a particle diameter.


Manganites Nanoparticles Mechanochemistry Magnetic properties Superspin-glass 



This project was financially supported by the Ministry of Science and Environmental Protection of Serbia (project number: 141027).


  1. Almeida JRL, Thouless DJ (1978) Stability of the Sherrington–Kirkpatrick solution of a spin glass model. J Phys A 11:983–990. doi: 10.1088/0305-4470/11/5/028 CrossRefGoogle Scholar
  2. Bahrami H, Kameli P, Salamati H (2009) Effect of annealing treatment on the magnetic properties of mechanochemical synthesized La0.8Pb02MnO3 manganites. Solid State Commun 149:1950–1954. doi: 10.1016/j.ssc.2009.07.039 CrossRefGoogle Scholar
  3. Batlle X, Garcia del Muro M, Tajeda J, Pfeiffer H, Görnert P, Sinn E (1993) Magnetic study of M-type doped barium ferrite nanocrystalline powders. J Appl Phys 74(5):3333–3340. doi: 10.1063/1.354558 CrossRefGoogle Scholar
  4. Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:1205. doi: 10.1063/1.2185850 CrossRefGoogle Scholar
  5. Dagoto E, Hotta T, Moreo A (2001) Collosal magnetoresistant materials: the key role of phase separation. Phys Rep 344:1–153. doi: 10.1016/S0370-1573(00)00121-6 CrossRefGoogle Scholar
  6. Dagoto E, Burgy J, Moreo A (2003) Nanoscale phase separation in colossal magnetoresistance materials: lessons for the cuprates? Solid State Commun 126:9–22. doi: 10.1016/S0038-1098(02)00662-2 CrossRefGoogle Scholar
  7. Demin RV, Koroleva LI, Szymszak R, Szymszak H (2002) Experimental evidence for a magnetic two-phase state in manganites. JETP Lett 75(2):331–335. doi: 10.1016/S0375-9601(02)00252-9 CrossRefGoogle Scholar
  8. El-Hilo M, O’Grady K, Chantrell RW (1992) Susceptibility phenomena in a fine particle system: II Field dependence of the peak. J Magn Magn Mater 114:307. doi: 10.1016/0304-8853(92)90273-Q CrossRefGoogle Scholar
  9. Garcia del Muro M, Batlle X, Labarta A (1999) Erasing the glassy state in magnetic fine particles. Phys Rev B 59(21):13584–13587. doi: 10.1103/PhysRevB.59.13584 CrossRefGoogle Scholar
  10. Garcia del Muro M, Batlle X, Labarta AJ (2000) Glassy behavior in magnetic fine particles. J Magn Magn Mater 221:26–31. doi: 10.1016/S0304-8853(00)00387-5 CrossRefGoogle Scholar
  11. Ibrahim MM, Darwish S, Seehra S (1995) Nonlinear temperature variation of magnetic viscosity in nanoscale FeOOH particles. Phys Rev B 51(5):2955–2959. doi: 10.1103/PhysRevB.51.2955 CrossRefGoogle Scholar
  12. Jönsson P, Felton S, Svedlindh P, Nordblad P, Hansen MF (2001) Fragility of the spin-glass-like collective state to a magnetic field in an interacting Fe–C nanoparticle system. Phys Rev B 64:212402. doi: 10.1103/PhysRevB.64.212402 CrossRefGoogle Scholar
  13. Mamiya H, Nakatani I (1998) Dynamic study of iron–nitride fine particle system: field dependence of the blocking temperature. J Magn Magn Mater 177–181:966–967. doi: 10.1016/S0304-8853(97)00572-6 CrossRefGoogle Scholar
  14. Markovic D, Kusigerski V, Tadic M, Blanusa J, Antisari MV, Spasojevic V (2008) Magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method without additional heat treatment. Scripta Mater 59:35–38. doi: 10.1016/j.scriptamat.2008.02.020 CrossRefGoogle Scholar
  15. Padmanabhan B, Elizabeth S, Bhat HL, Rößler S, Dörr K, Müller KH (2006) Crystal growth, transport and magnetic properties of rare-earth manganite Pr1−xPbxMnO3. J Magn Magn Mater 307(2):288–294. doi: 10.1016/j.jmmm.2006.04.018 CrossRefGoogle Scholar
  16. Papaefthymiou GC (2009) Nanoparticle magnetism. Nano Today 4:438–447. doi: 10.1016/j.nantod.2009.08.006 CrossRefGoogle Scholar
  17. Pfeiffer H, Schüppel W (1990) Investigation of magnetic properties of barium ferrite powders by remanence curves. Phys Status Solidi A 119:259. doi: 10.1002/pssa.2211190131 CrossRefGoogle Scholar
  18. Song H, Kim W, Kwon SJ (2001) Magnetic and electronic properties of transition-metal-substituted perovskite manganites—La0.7Ca0.3Mn0.95X0.05O3 (X = Fe, Co, Ni). J Appl Phys 6:3398. doi: 10.1063/1.1350417 CrossRefGoogle Scholar
  19. Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240:599. doi: 10.1098/rsta.1948.0007 CrossRefGoogle Scholar
  20. Suzuki M, Fullem SI, Suzuki IS, Wang L, Zhong CJ (2009) Observation of superspin-glass behavior in Fe3O4 nanoparticles. Phys Rev B 79:024418. doi: 10.1103/PhysRevB.79.024418 CrossRefGoogle Scholar
  21. Szymczak H, Baran M, Babonas GJ, Diduszko R, Fink-Finowicki J, Szymczak R (2005) Magnetic properties of La1−xCaxCoO3 single crystals. J Magn Magn Mater 285:386–394. doi: 10.1016/j.jmmm.2004.08.018 CrossRefGoogle Scholar
  22. Zhang D, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1998) Magnetization temperature dependence in iron nanoparticles. Phys Rev B 58(21):14167–14170. doi: 10.1103/PhysRevB.58.14167 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Vojislav Spasojevic
    • 1
  • Ana Mrakovic
    • 1
  • Marija Perovic
    • 1
  • Vladan Kusigerski
    • 1
  • Jovan Blanusa
    • 1
  1. 1.The Vinca InstituteUniversity of BelgradeBelgradeSerbia

Personalised recommendations