Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 7, pp 2629–2644 | Cite as

Nanoparticles based on novel amphiphilic polyaspartamide copolymers

  • Emanuela Fabiola Craparo
  • Girolamo Teresi
  • Maria Chiara Ognibene
  • Maria Pia Casaletto
  • Maria Luisa Bondì
  • Gennara Cavallaro
Research Paper

Abstract

In this article, the synthesis of two amphiphilic polyaspartamide copolymers, useful to obtain polymeric nanoparticles without using surfactants or stabilizing agents, is described. These copolymers were obtained starting from α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) by following a novel synthetic strategy. In particular, PHEA and its pegylated derivative (PHEA-PEG2000) were functionalized with poly(lactic acid) (PLA) through 1,1′-carbonyldiimidazole (CDI) activation to obtain PHEA–PLA and PHEA-PEG2000–PLA graft copolymers, respectively. These copolymers were properly purified and characterized by 1H-NMR, FT-IR, and Size Exclusion Chromatography (SEC) analyses, which confirmed that derivatization reactions occurred. Nanoparticles were obtained from PHEA–PLA and PHEA-PEG2000–PLA graft copolymers by using the high pressure homogenization-solvent evaporation method, avoiding the use of surfactants or stabilizing agents. Polymeric nanoparticles were characterized by dimensional analysis, before and after freeze-drying process, and Scanning Electron Microscopy (SEM). Zeta potential measurements and X-ray Photoelectron Spectroscopy (XPS) analysis demonstrated the presence of PEG and/or PHEA onto the PHEA-PEG2000–PLA and PHEA–PLA nanoparticle surface, respectively.

Keywords

α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) Poly(lactic acid) (PLA) Poly(ethylene glycol) (PEG) Graft copolymers Nanoparticles Drug delivery 

Notes

Acknowledgments

The authors thank MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca) for funding. The authors also thank Dr. Paolo Guerra (Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università of Palermo), for ESEM technical support.

References

  1. Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58:168–172CrossRefPubMedGoogle Scholar
  2. Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336:367–375CrossRefPubMedGoogle Scholar
  3. Cavallaro G, Maniscalco L, Licciardi M et al (2004) Tamoxifen loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies. Macromol Biosci 4:1028–1038CrossRefPubMedGoogle Scholar
  4. Cavallaro G, Campisi M, Licciardi M et al (2006) Reversibly stable thiopolyplexes for intracellular delivery of genes. J Controlled Release 115:322–334CrossRefGoogle Scholar
  5. Craparo EF, Cavallaro G, Bondì ML et al (2006) Pegylated nanoparticles based on a polyaspartamide. Preparation, physico-chemical characterization and intracellular uptake. Biomacromolecules 7:3083–3092CrossRefPubMedGoogle Scholar
  6. Craparo EF, Ognibene MC, Casaletto MP et al (2008) Biocompatible polymeric micelles with polysorbate 80 for brain targeting. Nanotechnology 19:485603CrossRefGoogle Scholar
  7. De Angelis BA, Rizzo C, Contarini S et al (1991) XPS study on the dispersion of carbone additives in silicon carbide powders. Appl Surf Sci 51:177–183CrossRefGoogle Scholar
  8. Dong YC, Feng SS (2004) Methoxy poly(ethylene glycol)–poly(lactide) (MPEG–PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25:2843–2849CrossRefPubMedGoogle Scholar
  9. Dunn SE, Coombes AGA, Garnett MC et al (1997) In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. J Controlled Release 44:65–76CrossRefGoogle Scholar
  10. Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRefPubMedADSGoogle Scholar
  11. Gref R, Luck M, Quellec P et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313CrossRefGoogle Scholar
  12. He X, Ma J, Mercado AE et al (2008) Cytotoxicity of paclitaxel in biodegradable self-sssembled core–shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm Res 25:1552–1562CrossRefPubMedGoogle Scholar
  13. Hu K, Li J, Shen Y et al (2009) Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Controlled Release 134:55–61CrossRefGoogle Scholar
  14. Li YP, Pei YY, Zhang XY et al (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Controlled Release 71:203–211CrossRefGoogle Scholar
  15. Ma LL, Jie P, Venkatraman S (2008) Block copolymer ‘stealth’ nanoparticles for chemotherapy: 1. Interactions with blood cells in vitro. Adv Funct Mater 18:716–725CrossRefGoogle Scholar
  16. Mandracchia D, Palumbo Piccionello A, Pitarresi G et al (2007) Fluoropolymer based on a polyaspartamide containing 1, 2, 4-oxadiazole units: a potential artificial oxygen (O2) carrier. Macromol Biosci 7:836–845CrossRefPubMedGoogle Scholar
  17. Martin A, Bustamante P, Chun AHC (1993) In: Physical pharmacy. Lea & Febiger, PhiladelphiaGoogle Scholar
  18. Mendichi R, Giammona G, Cavallaro G et al (2000) Molecular characterization of alpha, beta-poly(N-hydroxyethyl)-dl-aspartamide by light scattering and viscometry studies. Polymer 41:8649–8657CrossRefGoogle Scholar
  19. Moulder JF, Stickle WF, Sobol PE et al (1995) In: Chastain J, King RC Jr (eds) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Eden Prairie, USAGoogle Scholar
  20. Munier S, Messai I, Delair T et al (2005) Cationic PLA nanoparticles for DNA delivery: comparison of three surface polycations for DNA binding, protection and transfection properties. Colloid Surf B 43:163–173CrossRefGoogle Scholar
  21. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419CrossRefPubMedGoogle Scholar
  22. Patil YB, Toti US, Khdair A et al (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866CrossRefPubMedGoogle Scholar
  23. Peng T, Cheng SX, Zhuo RX (2006) Synthesis and characterization of poly-α-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers. J Biomed Mater Res A 76A:163–173CrossRefGoogle Scholar
  24. Pinto Reis C, Neufeld RJ, Ribeiro AJ et al (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21CrossRefGoogle Scholar
  25. Pitarresi G, Casadei MA, Mandracchia D et al (2007) Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon- specific drug delivery. J Controlled Release 119:328–338CrossRefGoogle Scholar
  26. Pitarresi G, Palumbo FS, Albanese A et al (2008) In situ gel forming graft copolymers of a polyaspartamide and polylactic acid: Preparation and characterization. Eur Polym J 44:3764–3775CrossRefGoogle Scholar
  27. Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37–51CrossRefPubMedGoogle Scholar
  28. Sant S, Poulin S, Hildgen P (2008) Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. J Biomed Mater Res A 87A:885–895CrossRefGoogle Scholar
  29. Sheng Y, Liu C, Yuan Y et al (2009) Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 30:2340–2348CrossRefPubMedGoogle Scholar
  30. Wang MD, Shin DM, Simons JW et al (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7:833–837CrossRefPubMedGoogle Scholar
  31. Zhang Z, Feng SS (2006) In vitro investigation on poly(lactide)-tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules 7:1139–1146CrossRefPubMedGoogle Scholar
  32. Zhou YX, Li SL, Fu HL et al (2008) Fabrication and in vitro drug release study of microsphere drug delivery systems based on amphiphilic poly-α, β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(l-lactide) graft copolymers. Colloids Surf B Biointerfaces 61:164–169CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Emanuela Fabiola Craparo
    • 1
  • Girolamo Teresi
    • 1
  • Maria Chiara Ognibene
    • 1
  • Maria Pia Casaletto
    • 2
  • Maria Luisa Bondì
    • 2
  • Gennara Cavallaro
    • 1
  1. 1.Dipartimento di Chimica e Tecnologie FarmaceuticheUniversità di PalermoPalermoItaly
  2. 2.Istituto per lo Studio dei Materiali NanostrutturatiConsiglio Nazionale delle RicerchePalermoItaly

Personalised recommendations