Skip to main content
Log in

Nanoparticles based on novel amphiphilic polyaspartamide copolymers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, the synthesis of two amphiphilic polyaspartamide copolymers, useful to obtain polymeric nanoparticles without using surfactants or stabilizing agents, is described. These copolymers were obtained starting from α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) by following a novel synthetic strategy. In particular, PHEA and its pegylated derivative (PHEA-PEG2000) were functionalized with poly(lactic acid) (PLA) through 1,1′-carbonyldiimidazole (CDI) activation to obtain PHEA–PLA and PHEA-PEG2000–PLA graft copolymers, respectively. These copolymers were properly purified and characterized by 1H-NMR, FT-IR, and Size Exclusion Chromatography (SEC) analyses, which confirmed that derivatization reactions occurred. Nanoparticles were obtained from PHEA–PLA and PHEA-PEG2000–PLA graft copolymers by using the high pressure homogenization-solvent evaporation method, avoiding the use of surfactants or stabilizing agents. Polymeric nanoparticles were characterized by dimensional analysis, before and after freeze-drying process, and Scanning Electron Microscopy (SEM). Zeta potential measurements and X-ray Photoelectron Spectroscopy (XPS) analysis demonstrated the presence of PEG and/or PHEA onto the PHEA-PEG2000–PLA and PHEA–PLA nanoparticle surface, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58:168–172

    Article  PubMed  Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336:367–375

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro G, Maniscalco L, Licciardi M et al (2004) Tamoxifen loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies. Macromol Biosci 4:1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro G, Campisi M, Licciardi M et al (2006) Reversibly stable thiopolyplexes for intracellular delivery of genes. J Controlled Release 115:322–334

    Article  CAS  Google Scholar 

  • Craparo EF, Cavallaro G, Bondì ML et al (2006) Pegylated nanoparticles based on a polyaspartamide. Preparation, physico-chemical characterization and intracellular uptake. Biomacromolecules 7:3083–3092

    Article  CAS  PubMed  Google Scholar 

  • Craparo EF, Ognibene MC, Casaletto MP et al (2008) Biocompatible polymeric micelles with polysorbate 80 for brain targeting. Nanotechnology 19:485603

    Article  Google Scholar 

  • De Angelis BA, Rizzo C, Contarini S et al (1991) XPS study on the dispersion of carbone additives in silicon carbide powders. Appl Surf Sci 51:177–183

    Article  Google Scholar 

  • Dong YC, Feng SS (2004) Methoxy poly(ethylene glycol)–poly(lactide) (MPEG–PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25:2843–2849

    Article  CAS  PubMed  Google Scholar 

  • Dunn SE, Coombes AGA, Garnett MC et al (1997) In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. J Controlled Release 44:65–76

    Article  CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gref R, Luck M, Quellec P et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313

    Article  CAS  Google Scholar 

  • He X, Ma J, Mercado AE et al (2008) Cytotoxicity of paclitaxel in biodegradable self-sssembled core–shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm Res 25:1552–1562

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Li J, Shen Y et al (2009) Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Controlled Release 134:55–61

    Article  CAS  Google Scholar 

  • Li YP, Pei YY, Zhang XY et al (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Controlled Release 71:203–211

    Article  CAS  Google Scholar 

  • Ma LL, Jie P, Venkatraman S (2008) Block copolymer ‘stealth’ nanoparticles for chemotherapy: 1. Interactions with blood cells in vitro. Adv Funct Mater 18:716–725

    Article  CAS  Google Scholar 

  • Mandracchia D, Palumbo Piccionello A, Pitarresi G et al (2007) Fluoropolymer based on a polyaspartamide containing 1, 2, 4-oxadiazole units: a potential artificial oxygen (O2) carrier. Macromol Biosci 7:836–845

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Bustamante P, Chun AHC (1993) In: Physical pharmacy. Lea & Febiger, Philadelphia

  • Mendichi R, Giammona G, Cavallaro G et al (2000) Molecular characterization of alpha, beta-poly(N-hydroxyethyl)-dl-aspartamide by light scattering and viscometry studies. Polymer 41:8649–8657

    Article  CAS  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE et al (1995) In: Chastain J, King RC Jr (eds) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Eden Prairie, USA

  • Munier S, Messai I, Delair T et al (2005) Cationic PLA nanoparticles for DNA delivery: comparison of three surface polycations for DNA binding, protection and transfection properties. Colloid Surf B 43:163–173

    Article  CAS  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  CAS  PubMed  Google Scholar 

  • Patil YB, Toti US, Khdair A et al (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Cheng SX, Zhuo RX (2006) Synthesis and characterization of poly-α-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers. J Biomed Mater Res A 76A:163–173

    Article  CAS  Google Scholar 

  • Pinto Reis C, Neufeld RJ, Ribeiro AJ et al (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21

    Article  Google Scholar 

  • Pitarresi G, Casadei MA, Mandracchia D et al (2007) Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon- specific drug delivery. J Controlled Release 119:328–338

    Article  CAS  Google Scholar 

  • Pitarresi G, Palumbo FS, Albanese A et al (2008) In situ gel forming graft copolymers of a polyaspartamide and polylactic acid: Preparation and characterization. Eur Polym J 44:3764–3775

    Article  CAS  Google Scholar 

  • Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37–51

    Article  CAS  PubMed  Google Scholar 

  • Sant S, Poulin S, Hildgen P (2008) Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. J Biomed Mater Res A 87A:885–895

    Article  CAS  Google Scholar 

  • Sheng Y, Liu C, Yuan Y et al (2009) Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 30:2340–2348

    Article  CAS  PubMed  Google Scholar 

  • Wang MD, Shin DM, Simons JW et al (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7:833–837

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Feng SS (2006) In vitro investigation on poly(lactide)-tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules 7:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Zhou YX, Li SL, Fu HL et al (2008) Fabrication and in vitro drug release study of microsphere drug delivery systems based on amphiphilic poly-α, β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(l-lactide) graft copolymers. Colloids Surf B Biointerfaces 61:164–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca) for funding. The authors also thank Dr. Paolo Guerra (Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università of Palermo), for ESEM technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennara Cavallaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craparo, E.F., Teresi, G., Ognibene, M.C. et al. Nanoparticles based on novel amphiphilic polyaspartamide copolymers. J Nanopart Res 12, 2629–2644 (2010). https://doi.org/10.1007/s11051-009-9842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9842-4

Keywords

Navigation