Journal of Nanoparticle Research

, Volume 12, Issue 7, pp 2611–2619 | Cite as

Heat transfer enhancement by application of nano-powder

  • M. T. Hamed Mosavian
  • S. Zeinali Heris
  • S. Gh. Etemad
  • M. Nasr Esfahany
Research Paper


In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.


Laminar flow Nanofluid Colloids Heat transfer enhancement Metallic nanoparticle Oxide nanoparticle Forced convection 

List of symbols


Tube cross-sectional area (m2)


Nanofluid specific heat (kJ kg−1 K−1)


Specific heat of nanoparticle (kJ kg−1 K−1)


Specific heat of water (kJ kg−1 K−1)


Tube diameter (m)

\( \overline{{h_{\text{nf}} }} (\exp ) \)

Nanofluid experimental average heat transfer coefficient (Wm−2 K−1)


Nanofluid thermal conductivity (Wm−1 K−1)


Thermal conductivity of nanoparticle (Wm−1 K−1)


Thermal conductivity of water (Wm−1 K−1)


Tube length (m)


Nanoparticle mass in nanofluid suspension (kg)

\( \overline{{Nu_{\text{nf}} }} (\exp ) \)

Nanofluid experimental average Nusselt number

\( \overline{{Nu_{\text{nf}} }} (th) \)

Nanofluid Nusselt number calculated form Seider–Tate equation


Nanofluid Peclet number


Nanofluid Prandtl number


Nanofluid Reynolds number


Inlet bulk temperature (K)


Exit bulk temperature (K)

\( \overline{Tb} \)

Average bulk temperature (K)


Tube wall temperature (K)

\( \overline{U} \)

Average fluid velocity (m s−1)


Nanoparticle volume in nanofluid suspension (m3)


Total volume of nanofluid (m3)

Greek letters


Nanofluid viscosity (Pa)


Water viscosity (Pa)


Nanofluid viscosity at tube wall temperature (Pa)


Nanoparticle volume fraction


Nanofluid density (kg m−3)


Nanoparticle density (kg m−3)


Water density (kg m−3)


  1. Ahuja AS (1975) Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J Appl Phys 46:3408–3416CrossRefADSGoogle Scholar
  2. Bang IC, Heung Chang S (2005) Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419CrossRefGoogle Scholar
  3. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, New YorkGoogle Scholar
  4. Choi SUS, Zhang ZG, Yu W et al (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRefADSGoogle Scholar
  5. Das SK, Putra N, Roetzel W (2003a) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862CrossRefGoogle Scholar
  6. Das SK, Putra N, Roetzel W (2003b) Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiph Flow 29:1237–1247MATHCrossRefGoogle Scholar
  7. Das SK, Putra N, Thiesen P et al (2003c) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRefGoogle Scholar
  8. Drew DA, Passman SL (1999) Theory of multi component fluids. Springer, BerlinGoogle Scholar
  9. Eastman JA, Choi US, Li S et al (1999) Novel thermal properties of nanostructured materials. Mater Sci Forum 312:629–634CrossRefGoogle Scholar
  10. Eastman JA, Choi SUS, Li S et al (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRefADSGoogle Scholar
  11. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191CrossRefGoogle Scholar
  12. Keblinski P, Phillpot SR, Choi SUS et al (2001) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863CrossRefGoogle Scholar
  13. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653MATHCrossRefGoogle Scholar
  14. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661MATHCrossRefGoogle Scholar
  15. Lee S, Choi SUS, Li S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–288CrossRefGoogle Scholar
  16. Li Q, Xuan Y (2000) Experimental investigation on transport properties of nanofluids. Heat Transf Sci Technol 2000:757–762Google Scholar
  17. Liu KV, Choi SUS, Kasza KE (1988) Measurement of pressure drop and heat transfer in turbulent flows of particulate slurries. Argonne National Laboratory ReportGoogle Scholar
  18. Masuda H, Ebata A, Teramae K et al (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-AlO3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan) 4:227–233Google Scholar
  19. Maxwell JC (1904) A treatise on electricity and magnetism. Oxford University Press, CambridgeGoogle Scholar
  20. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci 44:367–373CrossRefGoogle Scholar
  21. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRefADSGoogle Scholar
  22. Putra N, Roetzel W, Das SK (2003) Natural convection of nano-fluids. Heat Mass Transf/Waerme-und Stoffuebertragung 39:775–784CrossRefADSGoogle Scholar
  23. Roy G, Nguyen CT, Lajoie PR (2004) Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstruct 35:497–511CrossRefADSGoogle Scholar
  24. Seider EN, Tate GE (1936) Heat transfer and pressure drop of liquid in tubes. Ind Eng Chem 28:1429–1434Google Scholar
  25. Vadasz JJ, Govender S, Vadasz P (2005) Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations. Int J Heat Mass Transf 48:2673–2683CrossRefGoogle Scholar
  26. Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf 47:407–411CrossRefGoogle Scholar
  27. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672MATHCrossRefGoogle Scholar
  28. Webb RL (1993) Principle of enhanced heat transfer. John Wiley & Sons, New YorkGoogle Scholar
  29. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRefGoogle Scholar
  30. Xie H, Wang J, Xi T et al (2002) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23:571–580CrossRefGoogle Scholar
  31. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64CrossRefGoogle Scholar
  32. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRefGoogle Scholar
  33. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707MATHCrossRefGoogle Scholar
  34. Xue Q, Xu WM (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 90:298–301CrossRefADSGoogle Scholar
  35. Yang Y, Zhang ZG, Grulke EA et al (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116CrossRefGoogle Scholar
  36. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRefGoogle Scholar
  37. Zhou DW (2004) Heat transfer enhancement of copper nanofluid with acoustic cavitation. Int J Heat Mass Transf 47:3109–3117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. T. Hamed Mosavian
    • 1
  • S. Zeinali Heris
    • 1
  • S. Gh. Etemad
    • 2
  • M. Nasr Esfahany
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations