Skip to main content
Log in

Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bisphosphonates BP molecules have shown to be efficient for coating superparamagnetic iron oxide particles. In order to clarify the respective roles of electrical charge and the length of the molecules, bisphosphonates with one or two ammonium moieties with an intermediate aliphatic group of 3, 5 or 7 carbons were synthesized and iron oxide nanoparticles coated. The evaluation on their iron core properties was made by transmission electron microscopy (TEM), nuclear magnetic relaxation dispersion (NMRD) profiles and Mössbauer spectra. The core size is close to 5 nm, with a global superparamagnetic behaviour modified by a paramagnetic Fe-based layer, probably due to surface crystal alteration. The hydrodynamic sizes increase slightly with aliphatic chain length (from 9.8 to 18.6 nm). The presence of one or two ammonium group(s) lowers the negative electrophoretic mobility up to bear zero values but reduces their colloidal stability. These BP-coated iron oxide nanoparticles are promising Magnetic Resonance Imaging (MRI) contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482

    Article  CAS  PubMed  Google Scholar 

  • Brillet PY, Gazeau F, Luciani A, Bessoud B, Cuénod CA, Siauve N, Pons JN, Poupon J, Clément O (2005) Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles. Eur Radiol 15:1369–1377

    Article  PubMed  Google Scholar 

  • Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17:1225–1233

    Article  CAS  Google Scholar 

  • Daou TJ, Pourroy G, Begin-Colin S, Grenèche JM, Ulhaq-Bouillet C, Legaré P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404

    Article  CAS  Google Scholar 

  • Daou TJ, Begin-Colin S, Grenèche JM, Thomas F, Derory A, Bernhardt P, Legaré P, Pourroy G (2007) Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater 19:4494–4505

    Article  CAS  Google Scholar 

  • Daou TJ, Grenèche JM, Pourroy G, Buathong S, Derory A, Ulhaq-Bouillet C, Donnio B, Guillon D, Begin-Colin S (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20:5869–5875

    Article  CAS  Google Scholar 

  • Denizot B, Tanguy G, Hindré F, Rump E, Le Jeune JJ, Jallet P (1999) Phosphorylcholine coating of iron oxide nanoparticles. J Colloid Interface Sci 209:66–71

    Article  CAS  PubMed  Google Scholar 

  • Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433

    Article  CAS  PubMed  Google Scholar 

  • Groman EV, Josephson L, Lewis JM (1989) Biologically degradable superparamagnetic materials for use in clinical applications. US Patent 4,827,945

  • Halbreich A, Roger J, Pons JN, Geldwerth D, Da Silva MF, Roudier M, Bacri JC (1998) Biomedical applications of maghemite ferrofluid. Biochimie 80:379–390

    Article  CAS  PubMed  Google Scholar 

  • Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist non-specific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850

    Article  CAS  Google Scholar 

  • Illés E, Tombacz E (2004) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf A 230:99–109

    Article  Google Scholar 

  • Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330

    Article  CAS  PubMed  Google Scholar 

  • Jolivet JP (1994) De la solution à l’oxyde. CNRS Editions, Paris

    Google Scholar 

  • Jolivet JP, Chanéac C, Tronc E (2004a) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487

    Article  Google Scholar 

  • Jolivet JP, Froidefond C, Pottier A, Chanéac C, Cassaignon S, Tronc E, Euzen P (2004b) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modeling. J Mater Chem 14:3281–3288

    Article  CAS  Google Scholar 

  • Kosmulski M (2004) pH-dependent surface charging and points of zero charge II. J Colloid Interface Sci 275:214–224

    Article  CAS  PubMed  Google Scholar 

  • Lalatonne Y, Paris C, Serfaty JM, Weinmann P, Lecouvey M, Motte L (2008) Bis-phosphonates-ultra small superparamagnetic iron oxide nanoparticles: a platform towards diagnosis and therapy. Chem Commun 2553–2555

  • Laurent S, Nicotra C, Gossuin Y, Roch A, Ouakssim A, Vander Elst L, Cornant M, Soleil P, Muller RN (2004) Influence of the length of the coating molecules on the nuclear magnetic relaxivity of superparamagnetic colloids. Phys Status Solidi 1:3644–3650

    Article  CAS  Google Scholar 

  • Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Müller R, Costantini D, Couvreur P (2006) Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27:108–118

    Article  CAS  PubMed  Google Scholar 

  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620

    Article  CAS  Google Scholar 

  • Peng ZG, Hidajat K, Uddin MS (2004) Adsorption of bovine serum albumin on nanosized magnetic particles. J Colloid Interface Sci 271:277–283

    Article  CAS  PubMed  Google Scholar 

  • Peracchia MT, Harnisch S, Pinto-Alphandry H, Gulik A, Dedieu JC, Desmaële D, d’Angelo J, Müller RH, Couvreur P (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Port M, Corot C, Raynal I, Rousseaux O (2004) Nouvelles compositions de particules magnétiques recouvertes de dérivés gem-bisphosphonates. FR patent FR 2848850

  • Portet D, Denizot B, Rump E, Le Jeune JJ, Jallet P (2001) Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci 238:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pouliquen D (1988) Conception et évaluation de produits de contraste pour l’IRM du proton. PhD thesis

  • Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110:5403–5411

    Article  CAS  ADS  Google Scholar 

  • Tronc E, Chanéac C, Jolivet JP (1998) Structural and magnetic characterization of ε-Fe2O3. J Solid State Chem 139:93–104

    Article  CAS  ADS  Google Scholar 

  • Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R, Bogdanov A, Neuwelt EA, Papisov M (1995) Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 16:321–334

    Article  CAS  Google Scholar 

  • Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support provided by ‘Collectivités territoriales’ of Angers is gratefully acknowledged. The work of NMRD profiles was supported by the FNRS and the ARC Program 05/10-335 of the French Community of Belgium. The support and sponsorship concerted by COST Action D38 and the EMIL project are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Denizot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimi, A., Denizot, B., Hindré, F. et al. Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies. J Nanopart Res 12, 1239–1248 (2010). https://doi.org/10.1007/s11051-009-9815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9815-7

Keywords

Navigation