Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1239–1248 | Cite as

Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies

  • Ali Karimi
  • Benoit Denizot
  • François Hindré
  • Robert Filmon
  • Jean-Marc Greneche
  • Sophie Laurent
  • T. Jean Daou
  • Sylvie Begin-Colin
  • Jean-Jacques Le Jeune
Research Paper


Bisphosphonates BP molecules have shown to be efficient for coating superparamagnetic iron oxide particles. In order to clarify the respective roles of electrical charge and the length of the molecules, bisphosphonates with one or two ammonium moieties with an intermediate aliphatic group of 3, 5 or 7 carbons were synthesized and iron oxide nanoparticles coated. The evaluation on their iron core properties was made by transmission electron microscopy (TEM), nuclear magnetic relaxation dispersion (NMRD) profiles and Mössbauer spectra. The core size is close to 5 nm, with a global superparamagnetic behaviour modified by a paramagnetic Fe-based layer, probably due to surface crystal alteration. The hydrodynamic sizes increase slightly with aliphatic chain length (from 9.8 to 18.6 nm). The presence of one or two ammonium group(s) lowers the negative electrophoretic mobility up to bear zero values but reduces their colloidal stability. These BP-coated iron oxide nanoparticles are promising Magnetic Resonance Imaging (MRI) contrast agents.


Iron oxides Contrast agents Superparamagnetic behaviour Bisphosphonates NMRD profiles Mössbauer spectrometry Colloids Magnetic Resonance Imaging 



Financial support provided by ‘Collectivités territoriales’ of Angers is gratefully acknowledged. The work of NMRD profiles was supported by the FNRS and the ARC Program 05/10-335 of the French Community of Belgium. The support and sponsorship concerted by COST Action D38 and the EMIL project are kindly acknowledged.


  1. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482CrossRefPubMedGoogle Scholar
  2. Brillet PY, Gazeau F, Luciani A, Bessoud B, Cuénod CA, Siauve N, Pons JN, Poupon J, Clément O (2005) Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles. Eur Radiol 15:1369–1377CrossRefPubMedGoogle Scholar
  3. Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17:1225–1233CrossRefGoogle Scholar
  4. Daou TJ, Pourroy G, Begin-Colin S, Grenèche JM, Ulhaq-Bouillet C, Legaré P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404CrossRefGoogle Scholar
  5. Daou TJ, Begin-Colin S, Grenèche JM, Thomas F, Derory A, Bernhardt P, Legaré P, Pourroy G (2007) Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater 19:4494–4505CrossRefGoogle Scholar
  6. Daou TJ, Grenèche JM, Pourroy G, Buathong S, Derory A, Ulhaq-Bouillet C, Donnio B, Guillon D, Begin-Colin S (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20:5869–5875CrossRefGoogle Scholar
  7. Denizot B, Tanguy G, Hindré F, Rump E, Le Jeune JJ, Jallet P (1999) Phosphorylcholine coating of iron oxide nanoparticles. J Colloid Interface Sci 209:66–71CrossRefPubMedGoogle Scholar
  8. Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433CrossRefPubMedGoogle Scholar
  9. Groman EV, Josephson L, Lewis JM (1989) Biologically degradable superparamagnetic materials for use in clinical applications. US Patent 4,827,945Google Scholar
  10. Halbreich A, Roger J, Pons JN, Geldwerth D, Da Silva MF, Roudier M, Bacri JC (1998) Biomedical applications of maghemite ferrofluid. Biochimie 80:379–390CrossRefPubMedGoogle Scholar
  11. Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist non-specific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850CrossRefGoogle Scholar
  12. Illés E, Tombacz E (2004) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf A 230:99–109CrossRefGoogle Scholar
  13. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330CrossRefPubMedGoogle Scholar
  14. Jolivet JP (1994) De la solution à l’oxyde. CNRS Editions, ParisGoogle Scholar
  15. Jolivet JP, Chanéac C, Tronc E (2004a) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487CrossRefGoogle Scholar
  16. Jolivet JP, Froidefond C, Pottier A, Chanéac C, Cassaignon S, Tronc E, Euzen P (2004b) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modeling. J Mater Chem 14:3281–3288CrossRefGoogle Scholar
  17. Kosmulski M (2004) pH-dependent surface charging and points of zero charge II. J Colloid Interface Sci 275:214–224CrossRefPubMedGoogle Scholar
  18. Lalatonne Y, Paris C, Serfaty JM, Weinmann P, Lecouvey M, Motte L (2008) Bis-phosphonates-ultra small superparamagnetic iron oxide nanoparticles: a platform towards diagnosis and therapy. Chem Commun 2553–2555Google Scholar
  19. Laurent S, Nicotra C, Gossuin Y, Roch A, Ouakssim A, Vander Elst L, Cornant M, Soleil P, Muller RN (2004) Influence of the length of the coating molecules on the nuclear magnetic relaxivity of superparamagnetic colloids. Phys Status Solidi 1:3644–3650CrossRefGoogle Scholar
  20. Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Müller R, Costantini D, Couvreur P (2006) Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27:108–118CrossRefPubMedGoogle Scholar
  21. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620CrossRefGoogle Scholar
  22. Peng ZG, Hidajat K, Uddin MS (2004) Adsorption of bovine serum albumin on nanosized magnetic particles. J Colloid Interface Sci 271:277–283CrossRefPubMedGoogle Scholar
  23. Peracchia MT, Harnisch S, Pinto-Alphandry H, Gulik A, Dedieu JC, Desmaële D, d’Angelo J, Müller RH, Couvreur P (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275CrossRefPubMedGoogle Scholar
  24. Port M, Corot C, Raynal I, Rousseaux O (2004) Nouvelles compositions de particules magnétiques recouvertes de dérivés gem-bisphosphonates. FR patent FR 2848850Google Scholar
  25. Portet D, Denizot B, Rump E, Le Jeune JJ, Jallet P (2001) Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci 238:37–42CrossRefPubMedGoogle Scholar
  26. Pouliquen D (1988) Conception et évaluation de produits de contraste pour l’IRM du proton. PhD thesisGoogle Scholar
  27. Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110:5403–5411CrossRefADSGoogle Scholar
  28. Tronc E, Chanéac C, Jolivet JP (1998) Structural and magnetic characterization of ε-Fe2O3. J Solid State Chem 139:93–104CrossRefADSGoogle Scholar
  29. Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331CrossRefPubMedGoogle Scholar
  30. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M (1995) Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 16:321–334CrossRefGoogle Scholar
  31. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011CrossRefPubMedGoogle Scholar
  32. Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ali Karimi
    • 1
  • Benoit Denizot
    • 2
  • François Hindré
    • 1
  • Robert Filmon
    • 3
  • Jean-Marc Greneche
    • 4
  • Sophie Laurent
    • 5
  • T. Jean Daou
    • 6
  • Sylvie Begin-Colin
    • 7
  • Jean-Jacques Le Jeune
    • 1
  1. 1.Inserm U646, Université d’AngersAngersFrance
  2. 2.Centre Hospitalier Annemasse-BonnevilleBonnevilleFrance
  3. 3.Service Commun d’Imagerie et d’Analyses MicroscopiquesUniversité d’AngersAngers Cedex 01France
  4. 4.Laboratoire de Physique de I’Etat Condensé UMR 6087Université du MansLe Mans CedexFrance
  5. 5.Department of General, Organic and Biochemical ChemistryNMR and Molecular Imaging Laboratory, University of Mons-HainautMonsBelgium
  6. 6.Institut de Physique et Chimie des Matériaux de StrasbourgUMR CNRS-ULP 7504Strasbourg Cedex 2France
  7. 7.Laboratoire de Matériaux à Porosité Contrôlée, UMR CNRS 7016Université de Haute AlsaceMulhouse CedexFrance

Personalised recommendations