Journal of Nanoparticle Research

, Volume 12, Issue 6, pp 2233–2240 | Cite as

Luminescent properties of codoping Y2O3: Eu, Me (Me = Mg, Ca) nanorods

  • Zhilong Liu
  • Qin Wang
  • Yuming Yang
  • Chunyan Tao
  • Hua Yang
Research Paper


Phosphors of nanorods Y2O3: Eu (Mg, Ca) have been prepared by the hydrothermal method. The effect of Mg, Ca co-dopants on the Y2O3: Eu phosphor photoluminescence (PL) property was investigated. Upon excitation with ultraviolet (UV) irradiation, it is shown that there is a strong emission at around 610 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+. At a certain concentration, Mg, Ca ions’ doping effectively enhanced the luminescent properties of Y2O3: Eu3+ nanorods and did not change the cubic phase of the host. The structure of Y2O3: Eu3+ (Mg, Ca) phosphors was characterized by X-Ray diffraction (XRD). From XRD patterns, it is indicated that the phosphor Y2O3:(Eu, Ca) forms without impurity phase. From SEM, TEM images, it is shown that the crystal size of the nanorods phosphors is about 1–2 μm in length and 30–50 nm in diameter.


Y2O3 Eu Luminescence Codoped Mg Ca Nanorod 



This work is supported by National Natural Science Foundation of China.


  1. Ai ZP (2003) Luminescence of In2S3 nanocrystallites embedded in sol–gel silica xerogel. Opt Mater 24:589–593. doi: 10.1016/S0925-3467(03)00158-7 CrossRefADSGoogle Scholar
  2. Bosze EJ, Hirata GA, Shea-Rohwer LE, McKittrick J (2003) Improving the efficiency of a blue-emitting phosphor by an energy transfer from Gd3+ to Ce3+. J Lumin 104:47–54. doi: 10.1016/S0022-2313(02)00663-4 CrossRefGoogle Scholar
  3. Byeon SH, Ko MG, Park JC, Kim DK (2002) Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping. Chem Mater 14:603–608. doi: 10.1021/cm010533m CrossRefGoogle Scholar
  4. Chong MK, Pita K, Kam CH (2004) Photoluminescence of sol–gel-derived Y2O3:Eu3+ thin-film phosphors with Mg2+ and Al3+ co-doping. Appl Phys A 79:433–437. doi: 10.1007/s00339-004-2737-4 CrossRefADSGoogle Scholar
  5. Chong MK, Pita K, Kam CH (2005) Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing. J Phys Chem Solids 66:213–217. doi: 10.1016/j.jpcs.2004.09.016 CrossRefADSGoogle Scholar
  6. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, Englewood CliffsGoogle Scholar
  7. Debnath R, Nayak A, Ghosh A (2007) On the enhancement of luminescence efficiency of Y2O3:Eu3+ red phosphor by incorporating (Al3+, B3+) in the host lattice. Chem Phys Lett 444:324–327. doi: 10.1016/j.cplett.2007.07.041 CrossRefADSGoogle Scholar
  8. Gouveia-Neto AS, Costa EB, Santos PV, Bueno LA, Ribeiro SJL (2003) Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm. J Appl Phys 94:5671–5678. doi: 10.1063/1.1618352 CrossRefADSGoogle Scholar
  9. Jeong JH, Bae JS, Yi SS, Park JC, Kim YS (2003a) Photoluminescence characteristics of Li-doped Y2O3:Eu3+ thin-film phosphors on sapphire substrates. J Phys Condens Matter 15:567–574. doi: 10.1088/0953-8984/15/3/321 CrossRefADSGoogle Scholar
  10. Jeong JH, Moon BK, Seo HJ, Bae JS, Yi SS, Kim IW, Park HL (2003b) Enhanced green emission in ZnGa2O4: Mn thin film phosphors by Se doping. Appl Phys Lett 83:1346–1348. doi: 10.1063/1.1602169 CrossRefADSGoogle Scholar
  11. Jeong JH, Yang HK, Moon BK, Bae JS, Yi S, Choi H, Kim JH, Chung ST (2006) Li-doping effect on enhancement of photoluminescence in Gd2O3:Eu3+ films. Opt Mater 28:693–697. doi: 10.1016/j.optmat.2005.09.045 CrossRefADSGoogle Scholar
  12. Kang YC, Roh HS, Park SB (2000) Preparation of Y2O3:Eu phosphor particles of filled morphology at high precursor concentrations by spray pyrolysis. Adv Mater 12:451–453. doi: 0935-9648/00/0603-0451 CrossRefGoogle Scholar
  13. Ko MG, Park JC, Kim DK, Byeon SH (2003) Low-voltage cathodoluminescence property of Li-doped Gd2−xYxO3:Eu3+. J Lumin 104:215–221. doi: 10.1016/S0022-2313(03)00018-8 CrossRefGoogle Scholar
  14. Li X, Li Q, Xia ZG, Wang L, Yan WX, Wang JY, Boughton RI (2006) Growth and characterization of single-crystal Y2O3:Eu nanobelts prepared with a simple technique. Cryst Growth Des 6:2193–2196. doi: 10.1021/cg0600400 CrossRefGoogle Scholar
  15. Martinez RMI, Ireland TG, Fern GR, Silver J, Snowden MJ (2001) A new application for microgels: novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid. Langmuir 17:7145–7419. doi: 10.1021/la0105883 CrossRefGoogle Scholar
  16. Silver J, Martunez MI, Ireland TG, Withnall RJ (2001) The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors. J Phys Chem B 105:948–953. doi: 10.1021/jp002778c CrossRefGoogle Scholar
  17. Sun LD, Yao J, Liu CH, Liao CS, Yan CH (2000) Rare earth activated nanosized oxide phosphors: synthesis and optical properties. J Lumin 447:87–89. doi: 10.1016/S0022-2313(99)00471-8 Google Scholar
  18. Tao Y, Zhao GW, Zhang WP, Xia SD (1997) Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater Res Bull 32:501–506CrossRefGoogle Scholar
  19. Veitch CD (1991) Synthesis of polycrystalline yttrium iron garnet and yttrium aluminium garnet from organic precursors. J Mater Sci 26:6527–6532. doi: 10.1007/BF02387841 CrossRefADSGoogle Scholar
  20. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175. doi: 10.1021/jp993593c CrossRefGoogle Scholar
  21. Wilams DK, Tissue BM (1998) Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals. J Phys Chem B 102:916–920. doi: 10.1021/jp972996e CrossRefGoogle Scholar
  22. Yang J, Quan ZW, Kong DY, Liu XM, Lin J (2007) Y2O3: Eu3+ microspheres: solvothermal synthesis and luminescence properties. Cryst Growth Des 7:730–735. doi: 10.1021/cg060717j CrossRefGoogle Scholar
  23. Zhang WW, Zhang WP, Xie PB, Yin M, Chen HT, Jing L, Zhang YS, Lou LR, Xia SD (2003a) Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure. J Colloid Interface Sci 262:588–593. doi: 10.1016/S0021-9797(03)00169-3 CrossRefPubMedGoogle Scholar
  24. Zhang WW, Zhang WP, Xie PB, Yin M, Chen HT, Jing L, Zhang YS, Lou LR, Xia SD (2003b) Optical properties of nanocrystalline Y2O3: Eu depending on its odd structure. J Colloid Interface Sci 262:588–593. doi: 10.1016/S0021-9797(03)00169-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zhilong Liu
    • 1
  • Qin Wang
    • 1
  • Yuming Yang
    • 1
  • Chunyan Tao
    • 1
  • Hua Yang
    • 1
  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations