Skip to main content
Log in

Nanosensors having dipicolinic acid imprinted nanoshell for Bacillus cereus spores detection

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoclusters have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to gold–silver nanoclusters, reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for recognition. In this method, methacryloylamidoantipyrine–terbium ((MAAP)2–Tb(III)) has been used as a new metal-chelating monomer via metal coordination–chelation interactions and dipicolinic acid (DPA) which is main participant of Bacillus cereus spores used as a model. Nanoshell sensors with templates give a cavity that is selective for DPA. The DPA can simultaneously chelate to Tb(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Tb(III) ion and free coordination spheres has an effect on the binding ability of the gold–silver nanoclusters nanosensor. The binding affinity of the DPA imprinted nanoclusters has been investigated by using the Langmuir and Scatchard methods, and the respective affinity constants (K affinity) determined were found to be 1.43 × 104 and 9.1 × 106 mol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelsayed V, Saoud KM, El-Shall MS (2006) Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts. J Nanopart Res 8:519–531

    Article  CAS  Google Scholar 

  • Almeida JL, Wang L, Morrow JB, Cole KD (2006) Requirements for the development of Bacillus anthracis spore reference materials used to test detection systems. J Res Natl Inst Stand Technol 111:205–217

    CAS  Google Scholar 

  • Bell SEJ, Joseph N, Mackle JN, Sirimuthu NMS (2005) Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid—towards rapid anthrax endospore detection. Analyst 130:545–549

    Article  CAS  PubMed  ADS  Google Scholar 

  • Borra J-P (2006) Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration. J Phys D Appl Phys 39:R19–R54

    Article  CAS  ADS  Google Scholar 

  • Brust M, Bethell D, Kiely CJ, Schiffen DJ (1998) Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14:5425–5429

    Article  CAS  Google Scholar 

  • Collado J, Fernández A, Rodrigo M, Camats J, Martínez LA (2003) Kinetics of deactivation of Bacillus cereus spores. Food Microbiol 20:545–548

    Article  Google Scholar 

  • Dang JL, Heroux K, Kearney J, Arasteh A, Gostomski M, Emanuel PA (2001) Bacillus spore inactivation methods affect detection assays. Appl Environ Microbiol 67:3665–3670

    Article  CAS  PubMed  Google Scholar 

  • Diltemiz SE, Say R, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 75:890–896

    Article  CAS  PubMed  Google Scholar 

  • Edelstein AS, Cammarata RC (eds) (1996) Nanomaterials: synthesis, properties and applications. Institute of Physics, Philadelphia

    Google Scholar 

  • Ersöz A, Denizli A, Şener İ, Atılır A, Diltemiz S, Say R (2004) Removal of phenolic compounds with nitrophenol imprinted polymer based on Π-Π and hydrogen bonding interactions. Sep Purif Technol 38:173–179

    Article  Google Scholar 

  • Fahlman BD (2007) Mount pleasant. Materials chemistry, vol 1. Springer, MI, pp 282–283

  • Farquharson S, Gift AD, Maksymiuk P, Inscore FE (2004) Rapid dipicolinic acid extraction from Bacillus spores detected by surface-enhanced Raman spectroscopy. Appl Spectrosc 58:351–354

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fernández A, Ocio MJ, Fernández PS, Martinez A (2001) Effect of heat activation and inactivation conditions on germination and thermal resistance parameters of Bacillus cereus spores. Int J Food Microbiol 63:257–264

    Article  PubMed  Google Scholar 

  • Fichtel J, Sass H, Rullkötter J (2008) Assessment of spore contamination in pepper by determination of dipicolinic acid with a highly sensitive HPLC approach. Food Control 19:1006–1010

    Article  CAS  Google Scholar 

  • Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA (2000) Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127

    Article  CAS  PubMed  Google Scholar 

  • Guingab JD, Lauly B, Smith BW, Omenetto N, Winefordner JD (2007) Stability of silver colloids as substrate for surface enhanced raman spectroscopy detection of dipicolinic acid. Talanta 74:271–274

    Article  CAS  PubMed  Google Scholar 

  • Havey CD, Basile F, Mowry C, Voorhees KJ (2004) Evaluation of a micro-fabricated pyrolyzer for the detection of Bacillus anthracis spores. J Anal Appl Pyrolysis 72:55–61

    Article  CAS  Google Scholar 

  • He J, Luo X, Chen S, Cao L, Sun M, Yu Z (2003) Determination of spore concentration in Bacillus thuringiensis through the analysis of dipicolinate by capillary zone electrophoresis. J Chromatogr A 994:207–212

    Article  CAS  PubMed  Google Scholar 

  • Hindle AA, Hall EAH (1999) Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 124:1599–1604

    Article  CAS  PubMed  ADS  Google Scholar 

  • Iwamura M, Morita M (2004) Cation effect on energy transfer reactions from [Tb(2,6-pyridinedicarboxylate)3]3− to anionic chromium(III) and neodymium(III) complexes in aqueous solutions. Inorg Chim Acta 357:3451–3455

    Article  CAS  Google Scholar 

  • Kharitonov AB, Shipway AN, Willner I (1999) An Au-nanoparticle bis-bipyridinium cyclophane-functionalized ion-sensitive field-effect transistor for the sensing of adrenaline. Anal Chem 71:5441–5443

    Article  CAS  PubMed  Google Scholar 

  • Kolomenskii AA, Schuessler HA (2005) Raman spectra of dipicolinic acid in crystalline and liquid environments. Spectrochim Acta A 61:647–651

    Article  CAS  Google Scholar 

  • Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic application—a review. J Aerosol Sci 29(5/6):511–535

    Article  CAS  Google Scholar 

  • Lin CI, Joseph AK, Chang CK, Lee YD (2004) Molecularly imprinted polymeric film on semiconductor nanoparticles: analyte detection by quantum dot photoluminescence. J Chromatogr A 1027:259–262

    Article  CAS  PubMed  Google Scholar 

  • Liz-Marzan LM, Kamat PV (eds) (2003) Nanoscale materials. Kluwer Academic Publishers, London

    Google Scholar 

  • Matsui J, Akamatsu K, Nishiguchi S, Miyoshi D, Nawafune H, Tamaki K, Sugimato N (2004) Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal Chem 76:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Mazas M, González I, López M, González J, Martin R (1995) Effects of sporulation media and strain on thermal resistance of Bacillus cereus spores. Int J Food Sci Technol 30:71–78

    CAS  Google Scholar 

  • Mechaly A, Zahavy E, Fisher M (2008) Development and implementation of a single-chain Fv antibody for specific detection of Bacillus anthracis spores. Appl Environ Microbiol 74:818–822

    Article  CAS  PubMed  Google Scholar 

  • Özkütük EB, Ersöz A, Denizli A, Say R (2008) Preconcentration of phosphate ion onto ion-imprinted polymer. J Hazard Mater 157:130–136

    Article  PubMed  Google Scholar 

  • Pellegrino PM, Fell NF Jr, Rosen DL, Gillespie JB (1998) Bacterial endospores detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Anal Chem 70:1755–1760

    Article  CAS  Google Scholar 

  • Pellegrino PM, Fell NF Jr, Gillespie JB (2002) Enhanced spore detection using dipicolinate extraction techniques. Anal Chim Acta 455:167–177

    Article  CAS  Google Scholar 

  • Persson B, Stenhag K, Nilsson P, Larsson A, Uhlen M, Nygren PA (1997) Analysis of oligonucleotide probe affinities using surface plasmon resonance: a means for mutational scanning. Anal Biochem 246:34–44

    Article  CAS  PubMed  Google Scholar 

  • Rosen DL, Sharpless C, McGown LB (1997) Optical sensors for rapid, sensitive detection and quantitation of bacterial spores. Anal Chem 69:1082–1085

    Article  CAS  Google Scholar 

  • Say R (2006) Creation of recognition sites for organophosphate esters based on charge transfer and ligand exchange imprinting methods. Anal Chim Acta 579:74–80

    Article  CAS  PubMed  Google Scholar 

  • Sharma J, Chaki NK, Mandele AB, Pasricha R, Vijayamohanan K (2004) Controlled interlinking of Au and Ag nanoclusters using 4-aminothiophenol as molecular interconnects. J Colloid Interf Sci 272:145–152

    Article  CAS  Google Scholar 

  • Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2008) Generation of nanoparticles by spark discharge. J Nanopart Res. doi:10.1007/s11051-008-9407-y

  • Tsoi PY, Yang J, Sun YT, Sui SF, Yang MS (2000) Surface plasmon resonance study of DNA polymerases binding to template/primer DNA duplexes immobilized on supported lipid monolayers. Langmuir 16:6590–6596

    Article  CAS  Google Scholar 

  • Wang L, Lin YM (2007) Spore detection in aerobic granules by different dipicolinic acid releasing methods. Bioresour Technol 98:3164–3167

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Dinh TV (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sens Actuators B 121:61–66

    Article  Google Scholar 

  • Yang M, Tsoi PY, Li CW, Zhao J (2006) Analysis of interactions of template/primer duplexes with T7 DNA polymerase by oligonucleotide microarray. Sens Actuators B 115:428–433

    Article  Google Scholar 

  • Zhang J, Dalal N, Gleason C, Matthews MA, Waller LN, Fox KF, Fox A, Drews MJ, Laberge M, An YH (2006) On the mechanisms of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. J Supercrit Fluids 38:268–273

    Article  CAS  Google Scholar 

  • Zhou Y, Yu B, Levon K (2005) Potentiometric sensor for dipicolinic acid. Biosens Bioelectron 20:1851–1855

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rıdvan Say.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gültekin, A., Ersöz, A., Sarıözlü, N.Y. et al. Nanosensors having dipicolinic acid imprinted nanoshell for Bacillus cereus spores detection. J Nanopart Res 12, 2069–2079 (2010). https://doi.org/10.1007/s11051-009-9766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9766-z

Keywords

Navigation