Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 493–500 | Cite as

Combustion synthesis of nano-sized tungsten carbide powder and effects of sodium halides

Research Paper


The synthesis of nano-size tungsten carbide powder has been investigated with a WO3 + Mg + C + carbonate system using alkali halides. The effects of different types of alkali halides on combustion temperature and tungsten carbide formation were discussed. Sodium fluoride had a notable effect on the particle size of the product and the degree of transformation from the initial mixture. A small amount of ammonium carbonate activated the carburization of tungsten carbide by the gas phase carbon transportation. X-ray diffraction data and particle analysis showed that the final product synthesized from a WO3–Mg–C–(NH4)2CO3–NaF system contains pure-phase tungsten carbide with a particle size of 50–100 nm.


Tungsten carbide Combustion synthesis Sodium halides Nanoparticle synthesis Wear-resistant tools 


  1. Fang ZZ, Wang X, Ryu TG, Hwang KS, Sohn HY (2009) Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide. Int J Refract Met Mater 27:288–299CrossRefGoogle Scholar
  2. Fecht HJ (1992) Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition. Nanostruct Mater 1(2):125–130CrossRefGoogle Scholar
  3. Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Nanocrystalline metals prepared by high-energy ball milling. Metall Mater Trans A 21(9):2333–2337CrossRefADSGoogle Scholar
  4. Fitzsimmons M, Sarin VK (1995) Comparison of WCl6–CH4–H2 and WF6–CH4–H2 systems for growth of WC coatings. Surf Coat Technol 76:250–255CrossRefGoogle Scholar
  5. Hojo J, Oku T, Kato A (1978) Tungsten carbide powders produced by the vapor phase reaction of the WCl6–CH4–H2 system. J Less-Common Met 59:85–95CrossRefGoogle Scholar
  6. Jia K, Fischer TE, Gallois B (1998) Microstructure, hardness and toughness of nanostructured and conventional WC–Co composites. Nanostruct Mater 10:875–891CrossRefGoogle Scholar
  7. Kim JC, Kim BK (2004) Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process. Scripta Mater 50:969–972CrossRefGoogle Scholar
  8. Kim BK, Ha GH, Lee GG, Lee DW, Lee DW (1997) Structure and properties of nanophase WC/Co/VC/TaC hardmetal. Nanostruct Mater 9:233–236CrossRefGoogle Scholar
  9. Kosolapova TY (1971) Carbides: properties, production and applications. Plenum Press, New YorkGoogle Scholar
  10. Merzhanov AG (2004) The chemistry of self-propagating high-temperature synthesis. J Mater Chem 14:1779–1786CrossRefGoogle Scholar
  11. Nersisyan HH, Won HI, Won CW, Lee JH (2005a) Study of the combustion synthesis process of nanostructured WC and WC-Co. Mater Chem Phys 94:153–158CrossRefGoogle Scholar
  12. Nersisyan HH, Won HI, Won CW (2005b) Combustion synthesis of WC powder in the presence of alkali salts. Mater Lett 59:3950–3954CrossRefGoogle Scholar
  13. Porat R, Berger S, Rosen A (1996) Sintering behavior and mechanical properties of nanocrystalline WC/Co. Mater Sci Forum 225–227(Pt 1):629–634CrossRefGoogle Scholar
  14. Schubert WD, Bock A, Lux B (1995) General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. Int J Refract Met Mater 13:281–296CrossRefGoogle Scholar
  15. Seegopaul P, Gao L (2003) Method of forming nanograin tungsten carbide and recycling tungsten carbide. US patent 6524366Google Scholar
  16. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133CrossRefGoogle Scholar
  17. Tang X, Haubner R, Lux B, Kieffer B (1995) Preparation of ultrafine CVD WC powders deposited from WCl6 gas mixtures. J Phys IV Colloq 510:13–20Google Scholar
  18. Weast RC (1987–1988) Handbook of chemistry and physics. CRC Press, Inc., FloridaGoogle Scholar
  19. Won CW, Chun BS, Sohn HY (1993) Preparation of ultrafine tungsten carbide powder by CVD method from WCl6–C2H2–H2 mixtures. J Mater Res 8:2702–2708CrossRefADSGoogle Scholar
  20. Won HI, Nersisyan HH, Won CW (2008) Combustion synthesis of ultrafine tungsten carbide powder. J Mater Res 23:2393–2397CrossRefADSGoogle Scholar
  21. Zhang ZY, Wahlberg S, Wang MS, Muhammed M (1999) Processing of nanostructured WC–Co powder from precursor obtained by coprecipitation. Nanostruct Mater 12(1–4):163–166CrossRefGoogle Scholar
  22. Zhang L, Liu G, Yang G, Chen S, Huang B, Zhang C (2007) Surface adsorption phenomenon during the preparation process of nano WC and ultrafine cemented carbide. J RefracT Met Mater 25:166–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Rapidly Solidified Materials Research Center (RASOM)Chungnam National UniversityDaejeonKorea

Personalised recommendations