Journal of Nanoparticle Research

, Volume 12, Issue 5, pp 1755–1763 | Cite as

Structure and optical properties of tungsten oxide nanomaterials prepared by a modified plasma arc gas condensation technique

  • Cherng-Yuh Su
  • Hsuan-Ching Lin
  • Tsung-Kun Yang
  • Chung-Kwei Lin
Research Paper


With the use of a modified plasma arc gas condensation technique and control of the processing parameters, namely, plasma current and chamber pressure, we synthesized tungsten oxide nanomaterials with aspect ratios ranging from 1.1 (for equiaxed particles with the length and width of 48 nm and 44 nm, respectively) to 12.7 (for rods with the length and width of 266 nm and 21 nm, respectively). The plasma current and chamber pressure, respectively, ranged from 70 to 90 A and from 200 to 600 Torr. We then characterized the tungsten oxide nanomaterials by means of X-ray diffraction, high-resolution transmission electron microscope, UV–visible spectroscope, and photoluminescence (PL) spectroscope. Experimental results show that equiaxed tungsten oxide nanoparticles were produced at a relatively low plasma current of 70 A, whereas nanorods were produced when plasma currents or chamber pressures were increased. All of the as-prepared tungsten oxide nanomaterials exhibited a WO2.8 phase. Compared to the nanoparticles, the nanorods exhibited unique properties, such as a redshift in the UV–visible spectrum, a blue emission in PL spectrum, and a good performance in field emission. With respect to the field emission, the turn-on voltage for WO2.8 nanorods was found to be as low as 1.7 V/μm.


Plasma arc gas condensation technique Tungsten oxide Nanomaterials Nanorods Optical properties Nanomanufacturing 



This study was supported by the National Science Council of Taiwan under contract no. NSC94-2216-E-027-008 and NSC95-2216-E-027-009. The authors would like to thank Ms. Ying-Mei Chang and Ms. Liang-Chu Wang for their technical assistance on transmission electron microscope.


  1. Ağiral A, Gardeniers JGE (2008) Synthesis and atmospheric pressure field emission operation of W18O49 nanorods. J Phys Chem C 112:15183–15189. doi: 10.1021/jp809458j CrossRefGoogle Scholar
  2. Balázsi C, Wang L, Zayim EO, Szilágyi IM, Sedlacková K, Pfeifer J, Tóth AL, Gouma PI (2008) Nanosize hexagonal tungsten oxide for gas sensing applications. J Eur Ceram Soc 28:913–917. doi: 10.1016/j.jeurceramsoc.2007.09.001 CrossRefGoogle Scholar
  3. Biswas S, Kar S, Chaudhuri S (2006) Synthesis and characterization of zinc sulfide nanostructures. Synth React Inorg Met Org Nano Met Chem 36:33–36. doi: 10.1080/15533170500471417 Google Scholar
  4. Chen CH, Wang SJ, Ko RM, Kuo YC, Uang KM, Chen TM, Liou BW, Tsai HY (2006) The influence of oxygen content in the sputtering gas on the self-synthesis of tungsten oxide nanowires on sputter-deposited tungsten films. Nanotechnology 17:217–223. doi: 10.1088/0957-4484/17/1/036 CrossRefADSGoogle Scholar
  5. Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc 88:1684–1686. doi: 10.1111/j.1551-2916.2005.00341.x CrossRefGoogle Scholar
  6. Cross WB, Parkin IP (2003) Aerosol assisted chemical vapour deposition of tungsten oxide films from polyoxotungstate precursors: active photocatalysts. Chem Commun 9:1696–1697. doi: 10.1039/b303800a CrossRefGoogle Scholar
  7. Feng M, Pan AL, Zhang HR, Li ZA, Liu F, Liu W, Shi DX, Zou BS, Gao HJ (2005) Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Appl Phys Lett 86:141901–141901-3. doi: 10.1063/1.1898434 Google Scholar
  8. Fowler RH, Nordheim LW (1928) Electron emission in intense electric fields. Proc R Soc Lond A 119:173–181. doi: 10.1098/rspa.1928.0091 CrossRefADSGoogle Scholar
  9. Guo Y, Murata N, Ono K, Okazaki T (2005) Production of ultrafine particles of high-temperature tetragonal WO3 by dc arc discharge in Ar-O2 gases. J Nanopart Res 7:101–106. doi: 10.1007/s11051-004-7900-5 CrossRefGoogle Scholar
  10. He T, Yao J (2007) Photochromic materials based on tungsten oxide. J Mater Chem 17:4547–4557. doi: 10.1039/b709380b CrossRefGoogle Scholar
  11. He T, Ma Y, Cao Y, Hu X, Liu H, Zhang G, Yang W, Yao J (2002) Photochromism of WO3 colloids combined with TiO2 nanoparticles. J Phys Chem B 106:12670–12676. doi: 10.1021/jp026031t CrossRefGoogle Scholar
  12. Hong K, Xie M, Wu H (2006) Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology 17:4830–4833. doi: 10.1088/0957-4484/17/19/008 CrossRefADSGoogle Scholar
  13. Hu R, Wu H, Hong K (2007) Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process. J Cryst Growth 306:395–399. doi: 10.1016/j.jcrysgro.2007.05.007 CrossRefADSGoogle Scholar
  14. Huang K, Pan Q, Yang F, Ni S, He D (2008) The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties. Mater Res Bull 43:919–925. doi: 10.1016/j.materresbull.2007.04.036 CrossRefGoogle Scholar
  15. Jeon S, Yong K (2007) Direct synthesis of W18O49 nanorods from W2N film by thermal annealing. Nanotechnology 18:245602. doi: 10.1088/0957-4484/18/24/245602 CrossRefADSGoogle Scholar
  16. Kichambare P, Hi KF, Sadanadan RRB, Ro AM, Javed K, Menguc MP (2006) Growth of tungsten oxide nanorods with carbon caps. J Nanosci Nanotechnol 6:536–540. doi: 10.1166/jnn.2006.095 CrossRefPubMedGoogle Scholar
  17. Kojima Y, Kasuya K, Ooi T, Nagato K, Takayama K, Nakao M (2007) Effects of oxidation during synthesis on structure and field-emission property of tungsten oxide nanowires. Jpn J Appl Phys 46:6250–6253. doi: 10.1143/JJAP.46.6250 CrossRefADSGoogle Scholar
  18. Lee K, Seo WS, Park JT (2003) Synthesis and optical properties of colloidal tungsten oxide nanorods. J Am Chem Soc 125:3408–3409. doi: 10.1021/ja034011e CrossRefPubMedGoogle Scholar
  19. Li YB, Bando Y, Golberg D, Kurashima K (2003) WO3 nanorods/nanobelts synthesized via physical vapor deposition process. Chem Phys Lett 367:214–218. doi: 10.1016/S0009-2614(02)01702-5 CrossRefADSGoogle Scholar
  20. Liu Z, Bando Y, Tang C (2003) Synthesis of tungsten oxide nanowires. Chem Phys Lett 372:179–182. doi: 10.1016/S0009-2614(03)00397-X CrossRefADSGoogle Scholar
  21. Lou J, Ye BJ, Weng HM, Du HJ, Wang ZB, Wang XP (2008) The influence of filament temperature and oxygen concentration on tungsten oxide nanostructures by hot filament metal oxide deposition. J Phys D 41:155410. doi: 10.1088/0022-3727/41/15/155410 CrossRefADSGoogle Scholar
  22. Lu DY, Chen J, Zhou J, Deng SZ, Xu NS, Xu JB (2007) Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires. J Raman Spectrosc 38:176–180. doi: 10.1002/jrs.1620 CrossRefADSGoogle Scholar
  23. Nilasson GA, Granqvist CG (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17:127–156. doi: 10.1039/b612174h CrossRefGoogle Scholar
  24. Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M, Niederberger M (2005) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem Int Ed Engl 45:261–265. doi: 10.1002/anie.200502823 CrossRefPubMedGoogle Scholar
  25. Seelaboyina R, Huang J, Park J, Kang DH, Choi WB (2006) Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions. Nanotechnology 17:4840–4844. doi: 10.1088/0957-4484/17/19/010 CrossRefADSGoogle Scholar
  26. Su CY, Lin HC (2009) Direct route to tungsten oxide nanorod bundles: microstructures and electro-optical properties. J Phys Chem C 113:4042–4046. doi: 10.1021/jp809458j CrossRefGoogle Scholar
  27. Su CY, Lin CK, Cheng CW (2005) A modified plasma arc gas condensation technique to synthesize nanocrystalline tungsten oxide powders. Mater Trans 46:1016–1020. doi: 10.2320/matertrans.46.1016 CrossRefGoogle Scholar
  28. Su CY, Lin CK, Yang TK, Lin HC, Pan CT (2008) Oxygen partial pressure effect on the preparation of nanocrystalline tungsten oxide powders by a plasma arc gas condensation technique. Int J Refract Met Hard Mater 26:423–428. doi: 10.1016/j.ijrmhm.2007.09.006 CrossRefGoogle Scholar
  29. Subrahmanyam A, Karuppasamy A (2007) Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol Energy Mater Sol Cells 91:266–274. doi: 10.1016/j.solmat.2006.09.005 CrossRefGoogle Scholar
  30. Thangala J, Vaddiraju S, Bogale R, Thurman R, Powers T, Deb B, Sunkara MK (2007) Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3:890–896. doi: 10.1002/smll.200600689 CrossRefPubMedGoogle Scholar
  31. Zhang Y, Chen Y, Liu H, Zhou Y, Li R, Cai M, Sun X (2009) Three-dimensional hierarchical structure of single crystalline tungsten oxide nanowires: construction, phase transition, and voltammetric behavior. J Phys Chem C 113:1746–1750. doi: 10.1021/jp808774m CrossRefGoogle Scholar
  32. Zhao YM, Li YH, Ahmad I, McCartney DG, Zhu YQ, Hu WB (2006) Two-dimensional tungsten oxide nanowire networks. Appl Phys Lett 89:133116. doi: 10.1063/1.2357609 CrossRefADSGoogle Scholar
  33. Zheng Y, Chen C, Zha Y, Lin X, Zheng Q, Wei K, Zhu J, Zhu Y (2007) Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg Chem 46:6675–6682. doi: 10.1021/ic062394m CrossRefPubMedGoogle Scholar
  34. Zhou J, Gong L, Deng SZ, Chen J, She JC, Xu NS, Yang R, Wang ZL (2005) Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett 87:223108. doi: 10.1063/1.2136006 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cherng-Yuh Su
    • 1
  • Hsuan-Ching Lin
    • 1
  • Tsung-Kun Yang
    • 2
  • Chung-Kwei Lin
    • 3
  1. 1.Institute of Manufacturing TechnologyNational Taipei University of TechnologyTaipeiTaiwan
  2. 2.Institute of Mechatronic EngineeringNational Taipei University of TechnologyTaipeiTaiwan
  3. 3.Department of Materials Science and EngineeringFeng Chia UniversityTaichungTaiwan

Personalised recommendations