Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1449–1458 | Cite as

Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions

  • Manuela F. Frasco
  • Vicky Vamvakaki
  • Nikos Chaniotakis
Research Paper

Abstract

In this study, we report on a novel hybrid structure for the direct sensing of metal ions based on the use of CdSe quantum dots functionalized with tetrapyridyl-substituted porphyrin, a cation-selective carrier. It is shown that the porphyrin ion carrier coordinates to Cd atoms of the CdSe quantum dots through the Lewis basic pyridyl groups. The porphyrin-quantum dot ligation allows for the direct communication between the porphyrin and the underlying CdSe quantum structure. The quantum yield of CdSe is maintained despite the robust capping generated when the unmetallated porphyrins coordinate onto the quantum dots. Upon coordination with zinc ions, this porphyrin capping is shown to strongly contribute to the increase in the fluorescence efficiency of CdSe, via an activating interaction with the quantum dots surface. The results provide the grounds for the development of highly sensitive and selective nano-optode sensing systems.

Keywords

Quantum dots Porphyrin Fluorescence Metal ions 

Notes

Acknowledgments

This study was supported by “Fundação para a Ciência e a Tecnologia” (M. F. Frasco Post-Doctoral grant SFRH/BPD/40876/2007) and by the European Commission Program NANOMYC (Contract 036812). The authors acknowledge Dr. M. Čomor (Vinca Institute for Nuclear Sciences, Belgrade, Serbia) for kindly providing the CdSe QDs and Dr. R. Buiculescu for the TEM pictures.

Supplementary material

11051_2009_9714_MOESM1_ESM.pdf (120 kb)
(PDF120 KB)

References

  1. Altschuh D, Oncul S, Demchenko AP (2006) Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 19:459–477CrossRefPubMedGoogle Scholar
  2. Blom N, Odo J, Nakamoto K, Strommen DP (1986) Resonance Raman studies of metal tetrakis(4-N-methylpyridyl)porphine: band assignments, structure-sensitive bands, and species equilibria. J Phys Chem 90:2847–2852CrossRefGoogle Scholar
  3. Brown DV, Chaniotakis NA, Lee H, Ma SC, Park SB, Meyerhoff ME, Nick RJ, Groves JT (1989) Mn(II)-porphyrin-based thiocyanate-selective membrane electrodes: characterization and application in flow injection determination of thiocyanate in saliva. Electroanalysis 1:477–484CrossRefGoogle Scholar
  4. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefPubMedADSGoogle Scholar
  5. Burke JM, Kincaid JR, Spiro TG (1978) Resonance Raman spectra and vibrational modes of iron(III) tetraphenylporphine μ-oxo dimer. Evidence for phenyl interaction and lack of dimer splitting. J Am Chem Soc 100:6077–6083CrossRefGoogle Scholar
  6. Chaniotakis NA, Chasser AM, Meyerhoff ME, Groves JT (1988) Influence of porphyrin structure on anion selectivities of manganese(III) porphyrin based membrane electrodes. Anal Chem 60:185–188CrossRefPubMedGoogle Scholar
  7. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138CrossRefPubMedGoogle Scholar
  8. Chen D-M, Zhang Y-H, He T-J, Liu F-C (2002) Raman and UV–visible absorption spectra of ion-paired aggregates of copper porphyrins. Spectrochim Acta A 58:2291–2297CrossRefGoogle Scholar
  9. Chowdhury J, Ghosh M, Pal P, Misra TN (2003) Concentration-dependent surface-enhanced resonance Raman scattering of a porphyrin derivative adsorbed on colloidal silver particles. J Colloid Interface Sci 263:318–326CrossRefPubMedGoogle Scholar
  10. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301–310CrossRefPubMedGoogle Scholar
  11. Cormode DP, Davis JJ, Beer PD (2008) Anion sensing porphyrin functionalized nanoparticles. J Inorg Organomet Polym 18:32–40CrossRefGoogle Scholar
  12. Fagadar-Cosma E, Enache C, Armeanu I, Fagadar-Cosma G (2007) Comparative investigations of the absorption and fluorescence spectra of tetrapyridylporphyrine and Zn(II) tetrapyridylporphyrine. Dig J Nanomater Biostruct 2:175–183Google Scholar
  13. Gulino A, Fragala I, Scamporrino E, Vitalini D (2007) Similarities and differences among monolayers of a free base porphyrin and its copper complex: synthesis and characterization of a luminescent copper(II) porphyrin monolayer. J Phys Chem C 111:14125–14130CrossRefGoogle Scholar
  14. Isarov AV, Chrysochoos J (1997) Optical and photochemical properties of nonstoichiometric cadmium sulphide nanoparticles: surface modification with copper(II) ions. Langmuir 13:3142–3149CrossRefGoogle Scholar
  15. Ivanisevic A, Ellis AB, Ashkenasy G, Shanzer A, Rosenwaks Y (2000) Linker-enhanced binding of metalloporphyrins to cadmium selenide and implications for oxygen detection. Langmuir 16:7852–7858CrossRefGoogle Scholar
  16. Kang S, Yasuda M, Miyasaka H, Hayashi H, Kawasaki M, Umeyama T, Matano Y, Yoshida K, Isoda S, Imahori H (2008) Light harvesting and energy transfer in multiporphyrin-modified CdSe nanoparticles. ChemSusChem 1:254–261CrossRefPubMedGoogle Scholar
  17. Katari JEB, Colvin VL, Alivisatos AP (1994) X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J Phys Chem 98:4109–4117CrossRefGoogle Scholar
  18. Kobayashi Y, Itoh K (1985) Surface-enhanced resonance Raman scattering spectra of meso-substituted porphyrins in layered structures having CaF2/porphine/Ag and CaF2/Ag/porphine configurations. J Phys Chem 89:5174–5178CrossRefGoogle Scholar
  19. Landi BJ, Evans CM, Worman JJ, Castro SL, Bailey SG, Raffaelle RP (2006) Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes. Mater Lett 60:3502–3506CrossRefGoogle Scholar
  20. Li X-Y, Zgierski MZ (1991) Porphine force field: in-plane normal modes of free-base porphine. Comparison with metalloporphines and structural implications. J Phys Chem 95:4268–4287CrossRefGoogle Scholar
  21. Li J, Bao D, Hong X, Li D, Li J, Bai Y, Li T (2005) Luminescent CdTe quantum dots and nanorods as metal ion probes. Colloids Surf A 257–258:267–271CrossRefGoogle Scholar
  22. Liu T, Liu B, Zhang H, Wang Y (2005) The fluorescence bioassay platforms on quantum dots nanoparticles. J Fluoresc 15:729–733CrossRefPubMedMathSciNetGoogle Scholar
  23. Moore DE, Patel K (2001) Q-CdS photoluminescence activation on Zn2+ and Cd2+ salt introduction. Langmuir 17:2541–3544CrossRefGoogle Scholar
  24. Morf WE, Seiler K, Lehmann B, Behringer C, Hartman K, Simon W (1989) Carriers for chemical sensors: design features of optical sensors (optodes) based on selective chromoionophores. Pure Appl Chem 61:1613–1618CrossRefGoogle Scholar
  25. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21CrossRefGoogle Scholar
  26. Rivera L, Puyol M, Villuendas F, Alonso J (2008) Miniaturized setup for fluorescence sensing with optodes: characterization of a new hemicyanine ion-selective-based membrane. Sens Act B 134:863–868CrossRefGoogle Scholar
  27. Rush TSIII, Kozlowski PM, Piffat CA, Kumble R, Zgierski MZ, Spiro TG (2000) Computational modelling of metalloporphyrin structure and vibrational spectra: porphyrin ruffling in NiTPP. J Phys Chem B 104:5020–5034CrossRefGoogle Scholar
  28. Saini GSS (2006) Resonance Raman study of free-base tetraphenylporphine and its dication. Spectrochim Acta A 64:981–986CrossRefGoogle Scholar
  29. Saini GSS, Sharma S, Kaur S, Tripathi SK, Mahaja CG (2004) Infrared spectroscopic studies of free-base tetraphenylporphine and its dication. Spectrochim Acta A 61:3070–3076Google Scholar
  30. Schmelz O, Mews A, Basché T, Herrmann A, Müller K (2001) Supramolecular complexes from CdSe nanocrystals and organic fluorophors. Langmuir 17:2861–2865CrossRefGoogle Scholar
  31. Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696CrossRefPubMedADSGoogle Scholar
  32. Seiler K, Simon W (1992) Theoretical aspects of bulk optode membranes. Anal Chim Acta 266:73–87CrossRefGoogle Scholar
  33. Siskova K, Vlchova B, Turpin P-Y, Thorel A, Grosjean A (2008) Porphyrins as SERRS spectral probes of chemically functionalized Ag nanoparticles. Vibrat Spect 48:44–52CrossRefGoogle Scholar
  34. Stein P, Ulman A, Spiro TG (1984) Resonance Raman spectra of S2TPP, SSeTPP, Se2TPP, H2TPP: extended tetraphenylporphine vibrational assignments and bonding effects. J Phys Chem 88:369–374CrossRefGoogle Scholar
  35. Takagi S, Eguchi M, Tryk DA, Inoue H (2006) Porphyrin photochemistry in inorganic/organic hybrid materials: clays, layered semiconductors, nanotubes, and mesoporous materials. J Photochem Photobiol C 7:104–126CrossRefGoogle Scholar
  36. Vlascici D, Cosmas EF, Pica EM, Cosma V, Bizerea O, Mihailescu G, Olenic L (2008) Free base porphyrins as ionophores for heavy metal sensors. Sensors 8:4995–5004CrossRefGoogle Scholar
  37. von Borczyskowski C, Rempel U, Zenkevich E, Shulga A, Chernook A (1995) Spectroscopy of interchromophoric interactions in self-organized porphyrin and chlorin complexes. J Mol Struct 348:441–444CrossRefADSGoogle Scholar
  38. von Holt B, Kudera S, Weiss A, Schrader TE, Manna L, Parak WJ, Braun M (2008) Ligand exchange of CdSe nanocrystals probed by optical spectroscopy in the visible and mid-IR. J Mater Chem 18:2728–2732CrossRefGoogle Scholar
  39. Wageh S (2007) Raman and photoluminescence study of CdSe nanoparticles capped with a bifunctional molecule. Physica E 39:8–14CrossRefADSGoogle Scholar
  40. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860CrossRefGoogle Scholar
  41. Zenkevich E, Cichos F, Shulga A, Petrov EP, Blaudeck T, von Borczyskowski C (2005) Nanoassemblies designed from semiconductor quantum dots and molecular arrays. J Phys Chem B 109:8679–8692CrossRefPubMedGoogle Scholar
  42. Zenkevich E, Blaudeck T, Abdel-Mottaleb M, Cichos F, Shulga A, von Borczyskowski C (2006) Photophysical properties of self-aggregated porphyrin: semiconductor nanoassemblies. Int J Photoenergy 90242:1–7CrossRefGoogle Scholar
  43. Zenkevich EI, Baludeck T, Shulga AM, Cichos F, von Borczyskowski C (2007) Identification and assignment of porphyrin-CdSe hetero-nanoassemblies. J Lumin 122–123:784–788CrossRefGoogle Scholar
  44. Zhang Y-H, Chen D-M, He T, Liu F-C (2003) Raman and infrared spectral study of meso-sulfonatophenyl substituted porphyrins (TPPSn, n = 1, 2A, 2O, 3, 4). Spectrochim Acta A 59:87–101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Manuela F. Frasco
    • 1
  • Vicky Vamvakaki
    • 1
  • Nikos Chaniotakis
    • 1
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryUniversity of CreteIraklion, CreteGreece

Personalised recommendations