Journal of Nanoparticle Research

, Volume 12, Issue 5, pp 1625–1636 | Cite as

Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli

  • Lingling Zhang
  • Yunhong Jiang
  • Yulong Ding
  • Nikolaos Daskalakis
  • Lars Jeuken
  • Malcolm Povey
  • Alex J. O’Neill
  • David W. York
Research Paper


Aqueous suspensions containing 4.45 × 10−5 − 1.25 × 10−3 M ZnO particles exhibit a strong antibacterial activity against E. coli under the dark conditions. The dominant mechanisms of such antibacterial behaviour are found to be either or both of chemical interactions between hydrogen peroxide and membrane proteins, and chemical interactions between other unknown chemical species generated due to the presence of ZnO particles with the lipid bilayer. The effect of direct physical interactions between nanoparticles and biological cells are found to play a relatively small role under the conditions of this study.


ZnO nanoparticles E. coli Toxicity Antibacterial Mechanism Lipid vesicles EHS 



The authors would like to thank University of Leeds Interdisciplinary Institute for Nanomanufacturing, Procter & Gamble, The White Rose Doctoral Training Centre (DTC) and EPSRC (EP/E00041X/1 and EP/F015380) for financial support.


  1. Adams LK, Lyon DY, Alvarez JJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532CrossRefPubMedGoogle Scholar
  2. Axtell HC, Hartley SM, Sallavanti RA (2005) Multi-functional protective fibre and methods for use. United States Patent US2005026778Google Scholar
  3. Ball P (2001) Roll-up for revolution. Nature 414:142–144CrossRefPubMedADSGoogle Scholar
  4. Belloc NC, Pun SH, Jensen GS, Davis ME (2003) Tranferrin targeted gene delivery. Bioconjug Chem 14:1122–1132CrossRefGoogle Scholar
  5. Brayner R, Ferrari-lliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870CrossRefPubMedADSGoogle Scholar
  6. Clement NR, Gould JM (1981) Pyraine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipids vesicles. Biochemistry 20:1534–1538CrossRefPubMedGoogle Scholar
  7. Damiano E, Bassilana M, Rigaud JL, Leblanc G (1984) Use of the pH sensitive fluorescence probe pyranine to monitor internal pH changes in Escherichia coli membrane vesicles. FEBS Lett 166:120–124CrossRefPubMedGoogle Scholar
  8. Donaldson K, Tran CL (2004) An introduction to the short term toxicology of respirable industrial fibers. Mutat Res 553:5–9PubMedGoogle Scholar
  9. Donoldson K, Stone V, Gilmour PS, Brown DM, MacNee W (2000) Ultrafine particles: mechanisms of lung injury. Philos Trans R Soc Lond A 358:2741–2749CrossRefADSGoogle Scholar
  10. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5CrossRefPubMedGoogle Scholar
  11. Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coating. J Phys Chem B 109:8889–8898CrossRefPubMedGoogle Scholar
  12. Hewitt CJ, Bellara ST, Andreani A, Nebe-von-Caron G, Mcfarlane CM (2001) An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry. Biotechnol Lett 23:667–675CrossRefGoogle Scholar
  13. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health 41:2699–2711Google Scholar
  14. Kano K, Fendler JH (1978) Pyranine as a sensitive pH probe for liposome interiors and surfaces. Biochinica et biophysica acta 509:289–299CrossRefGoogle Scholar
  15. Kong G, Braun RD, Dewhirt MW (2000) Hypothermia enables tumor-specific nanoparticle delivery: effect of nanoparticle size. Cancer Res 60:4440–4445PubMedGoogle Scholar
  16. Lam CW, James JT, McCcluskey R, Hunt RL (2004) Pulmonary toxicity of single wall carbon nanotubes, in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134CrossRefPubMedGoogle Scholar
  17. Li XJ, Wang Y, Wang Y (2005) Photocatalytic and antiseptic far infrared fiber and its preparing method. Patent CN1587453Google Scholar
  18. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use s a bacteriocide. Adv Funct Mater 15:1708–1715CrossRefGoogle Scholar
  19. Mallin MA (2006) Wading in waste. Sci Am 294:53–59CrossRefGoogle Scholar
  20. Ozgur U, Alivov C, Liu C, Teke A, Reshchikov MA, Doggan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices, J Appl Phys 98:041301-1~103Google Scholar
  21. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082Google Scholar
  22. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182CrossRefPubMedGoogle Scholar
  23. Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995a) Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. J Chem Eng Jpn 28:288–293CrossRefGoogle Scholar
  24. Sawai J, Saito I, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995b) Mutagenicity test of ceramic powder which have growth inhibitory effect on bacteria. J Chem Eng Jpn 28:352–354CrossRefGoogle Scholar
  25. Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996a) Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries. J Chem Eng Jpn 29:251–256CrossRefGoogle Scholar
  26. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996b) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633CrossRefGoogle Scholar
  27. Schaechter M, Ingraham JL, Neidhardt FC (2006) Microbe. ASM Press, Washington, DC, p 24Google Scholar
  28. Schumacher K, Hasenzahl S, Moerters M (2004) Powder mixture consisting of titanium dioxide, zinc oxide and zinc/titanium mixed oxide. Worldwide Patent WO2004056706Google Scholar
  29. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  30. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRefPubMedGoogle Scholar
  31. Utamapanya S, Klabunde KJ, Schlup JR (1991) Nanoscale metal oxide particles/clusters as chemical reagents: synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem Mater 3:175–181CrossRefGoogle Scholar
  32. Wang YL, Wan YZ, Dong XH, Cheng GX, Tao HM, Wen TY (1998) Preparation and characterization of antibacterial viscose-based activated carbon fibre supporting silver. Carbon 36:1567–1571CrossRefGoogle Scholar
  33. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single wall carbon nanotubes in rats. Toxicol Sci 77:117–125CrossRefPubMedGoogle Scholar
  34. Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423:156–159CrossRefPubMedADSGoogle Scholar
  35. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646CrossRefGoogle Scholar
  36. Yamamoto O, Hotta M, Sawai J, Sasamoto T, Kojima H (1998) Influence of powder characteristic of ZnO on antibacterial activity—effect of specific surface area. J Ceram Soc Jpn 106:1007–1011Google Scholar
  37. Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci: Mater Med 15:847–851CrossRefGoogle Scholar
  38. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Antibacterial behaviour of suspensions of ZnO nanoparticles (Nanofluids). J Nanopart Res 9:479–489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lingling Zhang
    • 1
  • Yunhong Jiang
    • 2
  • Yulong Ding
    • 2
  • Nikolaos Daskalakis
    • 3
  • Lars Jeuken
    • 3
  • Malcolm Povey
    • 4
  • Alex J. O’Neill
    • 5
  • David W. York
    • 6
  1. 1.School of Civil and Environmental EngineeringUniversity of Science and TechnologyBeijingChina
  2. 2.Institute of Particle Science & EngineeringUniversity of LeedsLeedsUK
  3. 3.School of Physics and AstronomyUniversity of LeedsLeedsUK
  4. 4.Procter Department of Food ScienceUniversity of LeedsLeedsUK
  5. 5.Faculty of Biological SciencesUniversity of LeedsLeedsUK
  6. 6.Procter and Gamble Newcastle Technical CentreNewcastle-upon-TyneUK

Personalised recommendations