Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies

  • Nkwenti Azong-Wara
  • Christof Asbach
  • Burkhard Stahlmecke
  • Heinz Fissan
  • Heinz Kaminski
  • Sabine Plitzko
  • Thomas A. J. Kuhlbusch
Special issue: Environmental and human exposure of nanomaterials


A new Thermal Precipitator (TP) was developed as a personal sampler for nanoparticle exposure studies. Two parallel 20-mm-long plates with different but uniform temperatures were introduced into the TP with an appropriate gap distance, to achieve a uniform temperature gradient along the length of the plates. Particles are thermophoretically deposited on the colder plate in the TP which acts as the substrate. Analytical calculations were carried out to determine an optimal plate gap distance and temperature gradient in the TP. A simulation grid was created from the resulting geometry which was used for numerical modelling with a CFD Software. Results from the simulations showed a uniform deposition of particles up to the size range of about 300 nm for a temperature gradient of 15 K/mm and a 1-mm gap distance, independent of the orientation of the TP during sampling. In contrast to the old TP where up to 32 SEM images of its non-uniform particle deposition had to be evaluated to obtain an average particle size distribution, an evaluation of the uniform deposition with the new TP is much more simplified, remarkably reducing the time and cost of the evaluation, while providing more accurate results.


Thermal precipitator Thermophoresis CFD Nanoparticle exposure Personal sampler Particle deposition Environment EHS 


  1. Asbach C, Kuhlbusch TAJ, Fissan H (2005) Effect of corona discharge on the gas composition of the sample flow in the gas particle partitioner. J Environ Monit 7:877–882PubMedCrossRefGoogle Scholar
  2. Batchelor GK, Shen C (1985) Thermophoretic deposition of particles in gas flowing over cold surfaces. J Colloid Interface Sci 107(1):21–37Google Scholar
  3. Black JP (2006) MEMS-based system for particle exposure assessment using thin-film bulk acoustic wave resonators and IR/UV optical discrimination.
  4. Boelter KJ, Davidson JH (1997) Ozone generation by indoor, electrostatic air cleaners. Aerosol Sci Technol 27:689–708CrossRefGoogle Scholar
  5. Cardello N, Volckens J, Tolocka MP, Wiener R, Buckley TJ (2002) Technical note: performance of a personal electrostatic precipitator particle sampler. Aerosol Sci Technol 36:162–165CrossRefGoogle Scholar
  6. Cherrie JW (2003) The beginning of the science underpinning occupational hygiene. Ann Occup Hyg 47(3):179–185PubMedCrossRefGoogle Scholar
  7. Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond Ser A 83:357–365CrossRefADSGoogle Scholar
  8. Donaldson K, Li XY, MacNee W (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 29:553–560CrossRefGoogle Scholar
  9. Engelke T, van der Zwaag T, Asbach C, Fissan H, Kim JH, Yook S, Pui DYH (2007) Numerical evaluation of protection schemes for EUVL masks in carrier systems against horizontal aerosol flow. J Electrochem Soc 154(3):H170–H176Google Scholar
  10. Englert N (2004) Fine particles and human health—a review of epidemiological studies. Toxicol Lett 149:235– 242PubMedCrossRefGoogle Scholar
  11. Evans DE, Heitbrink WA, Slavin TJ, Peters TM (2008) Ultrafine and respirable particles in an automotive grey iron foundry. Ann Occup Hyg 52:9–21PubMedCrossRefGoogle Scholar
  12. Fissan H (2008) Nachhaltige Nanotechnologie, Nordrhein-Westfälische Akademie der Wissenschaften—Vorträge I 21, Ferdiand Schöningh, Paderborn (ISBN 978-3-506-76565-9)Google Scholar
  13. Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I, Karg E, Mossa C, Schroeppel A, Ferron GA, Heyder J, Greaves M, MacNee W, Donaldson K (2004) Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 195:35–44PubMedCrossRefGoogle Scholar
  14. Gonzalez D, Nasibulin AG, Baklanov AM, Shandakov SD, Brown DP, Queipo P, Kauppinen EI (2005) A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Technol 39:1064–1071CrossRefGoogle Scholar
  15. Hering SV, Flagan RC, Friedlander SK (1978) Design and evaluation of new low pressure impactor. Environ Sci Technol 12:667–673CrossRefGoogle Scholar
  16. Hinds WC (1999) Aerosol technology; properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New YorkGoogle Scholar
  17. Keskinen J, Pietarinen K, Lehtmäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23:353–360CrossRefGoogle Scholar
  18. Kim JH, Mulholland GW, Kukuck SR, Pui DYH (2005) Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen number from 0.5 to 83. J Res Natl Inst Stand Technol 110:31Google Scholar
  19. Kuhlbusch TAJ, Fissan H (2006) Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Environ Hyg 3:558–567PubMedCrossRefGoogle Scholar
  20. Kuhlbusch TAJ, Fissan H, Neumann S (2004) Number size distribution, mass concentration, and particle composition of PM 1, PM 2.5 and PM 10 in bag filling areas of carbon black production, ICBA-Study. J Occup Environ Hyg 1:660–674PubMedCrossRefGoogle Scholar
  21. Kuhlbusch TAJ, Fissan H, Asbach C (2009) Nanoparticles and exposure: measurement technologies and strategies. In: Linkov I , Steevens J (eds) Nanomaterials: environmental risks and benefits and emerging consumer products. Springer, Berlin, pp 233–243Google Scholar
  22. Lee SJ, Demokritou P, Koutrakis P, Delgado-Saborit JM (2006) Development and evaluation of personal respirable particulate sampler. Atmos Environ 40:212–224CrossRefGoogle Scholar
  23. Lee J, Altman I, Choi M (2008) Design of a thermophoretic probe for precise particle sampling. J Aerosol Sci 39:418–431CrossRefGoogle Scholar
  24. Martinez P, Brandvold DK (1996) Laboratory and field measurements of NOx produced from corona discharge. Atmos Environ 30:4177–4182CrossRefGoogle Scholar
  25. Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614CrossRefGoogle Scholar
  26. Misra C, Singh M, Shen S, Sioutas C, Hall PM (2002) Development and evaluation of a personal cascade impactor (PCIS). J Aerosol Sci 33:1027–1047CrossRefGoogle Scholar
  27. Nel A (2005) Atmosphere. Air pollution-related illness: effects of particles. Science 308(5723):804–806PubMedCrossRefGoogle Scholar
  28. Oberdörster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8PubMedCrossRefGoogle Scholar
  29. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543PubMedCrossRefGoogle Scholar
  30. Orr C, Martin RA (1958) Thermal precipitator for continuous aerosol sampling. Rev Sci Instrum 29:129–130CrossRefADSGoogle Scholar
  31. Page SJ, Volkwein JC, Vinson RP, Joy GJ, Mischler SE, Tuchmann DP, McWilliams LJ (2008) Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler. J Environ Monit 10:96–101PubMedCrossRefGoogle Scholar
  32. Peters TM, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD (2006) The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Ann Occup Hyg 50:249–257PubMedCrossRefGoogle Scholar
  33. Plitzko S A thermal precipitator as a personal sampler, BIA Report 7/2003e,
  34. Qi C, Chen DR, Greenberg P (2008a) Fundamental study of a miniaturized disk-type electrostatic aerosol precipitator for a personal nanoparticle sizer. Aerosol Sci Technol 42:505–512CrossRefGoogle Scholar
  35. Qi C, Chen DR, Greenberg P (2008b) Performance study of a unipolar aerosol mini-charger for a personal nanoparticle sizer. J Aerosol Sci 39:450–459CrossRefGoogle Scholar
  36. Roach SA (1959) Measuring dust exposure with the thermal precipitator in collieries and foundries. Br J Ind Med 16:104PubMedGoogle Scholar
  37. Rubow KL, Marple VA, Olin J, McCawley MA (1987) A personal cascade impactor—design, evaluation and calibration. Am Ind Hyg Assoc J 48:532–538PubMedGoogle Scholar
  38. Sherwood RJ, Greenhalgh DMS (1960) A personal air sampler. Ann Occup Hyg 2:127–132PubMedGoogle Scholar
  39. Sioutas C, Chang MC, Kim S, Koutrakis P, Ferguson ST (1999) Design and experimental characterization of a PM1 and a PM2.5 personal sampler. J Aerosol Sci 6:693–707CrossRefGoogle Scholar
  40. Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101(part 4):737–758CrossRefADSGoogle Scholar
  41. Tsai CJ, Chang CS, Chen SC, Chen P, Shih TS, Pui DYH, Karasev VV, Onischuk AA, Li SN (2008) Laboratory and field tests of a novel three-stage personal dust sampler for sampling three dust fractions simultaneously. Aerosol Sci Technol 42:86–95CrossRefGoogle Scholar
  42. Viner AS, Lawless PA, Ensor DS, Sparks LE (1992) Ozone generation in DC-energized electrostatic precipitators. IEEE Trans Ind Appl 28:504–512CrossRefGoogle Scholar
  43. Wu YH, Vincent JH (2007) A modified marple-type cascade impactor for assessing aerosol particle size distributions in workplaces. J Occup Environ Hyg 4:798–807PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nkwenti Azong-Wara
    • 1
  • Christof Asbach
    • 1
  • Burkhard Stahlmecke
    • 1
  • Heinz Fissan
    • 1
    • 2
  • Heinz Kaminski
    • 1
  • Sabine Plitzko
    • 3
  • Thomas A. J. Kuhlbusch
    • 1
    • 2
  1. 1.Institute of Energy and Environmental Technology (IUTA)Air Quality & Sustainable Nanotechnology UnitDuisburgGermany
  2. 2.Center for Nanointegration Duisburg-Essen (CeNIDE)DuisburgGermany
  3. 3.Federal Institute for Occupational Safety and Health (BAuA)BerlinGermany

Personalised recommendations