Facile synthesis of single-crystal silver nanowires through a tannin-reduction process

  • Xuelin Tian
  • Juan Li
  • Shilie Pan
Brief Communication


A facile aqueous-phase approach for the synthesis of silver nanowires is reported, in which tannin (C76H52O46) is used as a mild reducing agent for silver nitrate. This synthesis is a root-temperature, seedless process, and does not need any surfactant or capping agent to direct the anisotropic growth of the nanoparticles. The obtained silver nanowires are about 25 nm in diameter and up to 20 μm in length. Unlike the usually reported cases of silver nanowires or nanorods, in which the silver nanocrystals were often generated with a multi-twinned structure, in our experiments the nanowires adopt a single-crystal structure with their growth direction along the [100] axis. Investigations on the influence of different experimental conditions indicate that slow rate of the reduction process is a key factor for inducing the anisotropic growth of the nanowires.


Silver Nanowire Eco-friendly Tannin Reduction rate 

Supplementary material

11051_2009_9700_MOESM1_ESM.pdf (68 kb)
Supplementary material 1 (PDF 67 kb)


  1. Ascencio JA, Mejia Y, Liu HB, Angeles C, Canizal G (2003) Bioreduction synthesis of Eu-Au nanoparticles. Langmuir 19:5882–5886CrossRefGoogle Scholar
  2. Bardhan R, Neumann O, Mirin N, Wang H, Halas NJ (2009) Au nanorice assemble electrolytically into mesostars. Acs Nano 3:266–272PubMedCrossRefGoogle Scholar
  3. Canizal G, Ascencio JA, Gardea-Torresday J, Yacaman MJ (2001) Multiple twinned gold nanorods grown by bio-reduction techniques. J Nanopart Res 3:475–481CrossRefGoogle Scholar
  4. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3:667–669CrossRefADSGoogle Scholar
  5. Chen J, Herricks T, Geissler M, Xia Y (2004) Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J Am Chem Soc 126:10854–10855PubMedCrossRefGoogle Scholar
  6. Christopher P, Linic S (2008) Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J Am Chem Soc 130:11264–11265PubMedCrossRefGoogle Scholar
  7. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292PubMedCrossRefADSGoogle Scholar
  8. Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ (2005) Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater 17:6042–6052CrossRefGoogle Scholar
  9. Elechiguerra JL, Reyes-Gasga J, Yacaman MJ (2006) The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mater Chem 16:3906–3919CrossRefGoogle Scholar
  10. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264PubMedCrossRefGoogle Scholar
  11. Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater 12:202–205CrossRefGoogle Scholar
  12. Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445CrossRefGoogle Scholar
  13. Huang MH, Choudrey A, Yang PD (2000) Ag nanowire formation within mesoporous silica. Chem Commun: 1063–1064Google Scholar
  14. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun: 617–618Google Scholar
  15. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770CrossRefGoogle Scholar
  16. Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15:1197–1208CrossRefGoogle Scholar
  17. Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426PubMedCrossRefADSGoogle Scholar
  18. Marks LD (1994) Experimental studies of small-particle structures. Rep Prog Phys 57:603–649CrossRefADSGoogle Scholar
  19. Mjuulin JW (1961) Crystallization. Butterworth, LondonGoogle Scholar
  20. Mohanty P, Yoon I, Kang T, Seo K, Varadwaj KSK, Choi W, Park QH, Ahn JP, Suh YD, Ihee H, Kim B (2007) Simple vapor-phase synthesis of single-crystalline ag nanowires and single-nanowire surface-enhanced raman scattering. J Am Chem Soc 129:9576–9577PubMedCrossRefGoogle Scholar
  21. Ni C, Hassan PA, Kaler EW (2005) Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir 21:3334–3337PubMedCrossRefGoogle Scholar
  22. Peppler K, Janek J (2007) Template assisted solid state electrochemical growth of silver micro- and nanowires. Electrochim Acta 53:319–323CrossRefGoogle Scholar
  23. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanosc Res Lett 2:248–250CrossRefADSGoogle Scholar
  24. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627PubMedCrossRefADSGoogle Scholar
  25. Shen Q, Sun J, Wei H, Zhou Y, Su Y, Wang D (2007) Fabrication of silver nanorods controlled by a segmented copolymer. J Phys Chem C 111:13673–13678CrossRefGoogle Scholar
  26. Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077–2081PubMedCrossRefADSGoogle Scholar
  27. Sun XM, Li YD (2005) Cylindrical silver nanowires: preparation, structure, and optical properties. Adv Mater 17:2626–2630CrossRefGoogle Scholar
  28. Sun Y, Gates B, Mayers B, Xia Y (2002a) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168CrossRefADSMATHGoogle Scholar
  29. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002b) Uniform silver nanowires synthesis by reducing agno3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745CrossRefGoogle Scholar
  30. Sun L, Zhang ZJ, Dang HX (2004) Synthesis and characterization of oil soluble ag nanoparticles. Chin J Chem Phys 17:618–622Google Scholar
  31. Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233CrossRefADSGoogle Scholar
  32. Tian M, Wang J, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923CrossRefADSGoogle Scholar
  33. Tian XL, Wang WH, Cao GY (2007) A facile aqueous-phase route for the synthesis of silver nanoplates. Mater Lett 61:130–133CrossRefGoogle Scholar
  34. Wang Z, Liu J, Chen X, Wan J, Qian Y (2005) A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem Eur J 11:160–163CrossRefGoogle Scholar
  35. Wang B, Fei GT, Zhou Y, Wu B, Zhu X, Zhang L (2008) Controlled growth and phase transition of silver nanowires with dense lengthwise twins and stacking faults. Cryst Growth Des 8:3073–3076CrossRefGoogle Scholar
  36. Wei G, Zhou H, Liu Z, Song Y, Wang L, Sun L, Li Z (2005) One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B 109:8738–8743PubMedCrossRefGoogle Scholar
  37. Wiley B, Sun YG, Mayers B, Xia YN (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463CrossRefGoogle Scholar
  38. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  39. Xiong Y, Xie Y, Wu C, Yang J, Li Z, Xu F (2003) Formation of silver nanowires through a sandwiched reduction process. Adv Mater 15:405–408CrossRefGoogle Scholar
  40. Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol 19:1091–1103CrossRefGoogle Scholar
  41. Yu SH, Cui XJ, Li LL, Li K, Yu B, Antonietti M, Cölfen H (2004) From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization. Adv Mater 16:1636–1640CrossRefGoogle Scholar
  42. Zhang ZB, Sun XZ, Dresselhaus MS, Ying JY, Heremans J (2000) Electronic transport properties of single-crystal bismuth nanowire arrays. Phys Rev B 61:4850–4861CrossRefADSGoogle Scholar
  43. Zhang SH, Jiang ZY, Xie ZX, Xu X, Huang RB, Zheng LS (2005) Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. J Phys Chem B 109:9416–9421PubMedCrossRefGoogle Scholar
  44. Zhu JJ, Liu SW, Palchik O, Koltypin Y, Gedanken A (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Chinese Academy of SciencesXinjiang Technical Institute of Physics and ChemistryUrumqiPeople’s Republic of China

Personalised recommendations