Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1423–1428 | Cite as

A novel approach for preparing silver nanoparticles under electron beam irradiation

  • Kai Li
  • Fu-Shen Zhang
Research Paper


Silver (Ag) nanoparticles were obtained when Ag microparticles were exposed to an electron beam in a transmission electron microscope (TEM). Results from TEM characterization indicated that the morphologies of the prepared Ag nanoparticles were quasi-circular, and the sizes were mainly in the range of 5–60 nm. The effect of irradiation time (t) on size and distribution of Ag nanoparticles was investigated. It was found that the sizes of Ag nanoparticles increased with the increase of t. The bigger Ag nanoparticles were near the Ag microparticle and the smaller ones were far from it. In addition, these Ag nanoparticles were monodisperse. This approach offered a new route for preparing Ag nanoparticles under electron beam irradiation, and the forming process of Ag nanoparticles was explained by the nucleation-growth mechanism.


Ag nanoparticles Ag microparticles Electron beam irradiation method Calcination method Irradiation time Nucleation-growth mechanism Synthesis 



This research was financially supported, in part, by the National Key Technology R&D Program (2008BAC32B03) and the National Basic Research Program (2007CB407303) of China. The authors thank Prof. Zheng-Ping Hao for his helpful discussion and improving upon this manuscript.


  1. Ahn SJ, Kim KH, Chun YG et al (2006) Nucleation and growth of Cu(In, Ga)Se2 nanoparticles in low temperature colloidal process. Thin Solid Films 515:4036–4040. doi: 10.1016/j.tsf.2006.10.102 CrossRefADSGoogle Scholar
  2. Baker C, Pradhan A, Pakstis L et al (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249. doi: 10.1166/jnn.2005.034 CrossRefPubMedGoogle Scholar
  3. He X, Zhao XJ, Chen YX et al (2007) Synthesis and characterization of silver nanowires with zigzag morphology in N N-dimethylformamide. J Solid State Chem 180:2262–2267. doi: 10.1016/jssc.2007.05.023 CrossRefADSGoogle Scholar
  4. Ji M, Chen XY, Wai CM et al (1999) Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion. J Am Chem Soc 121:2631–2632. doi: 10.1021/ja9840403 CrossRefGoogle Scholar
  5. Khaydarov RA, Khaydarov RR, Gapurova O et al (2008) Electrochemical method for the synthesis of silver nanoparticles. J Nanopart Res doi: 10.1007/s11051-008-9513-x
  6. Kim JU, Cha SH, Shin K et al (2005) Synthesis of gold nanoparticles from gold(I)-alkanethiolate complexes with supramolecular structures through electron beam irradiation in TEM. J Am Chem Soc 127:9962–9963. doi: 10.1021/ja042423x CrossRefPubMedGoogle Scholar
  7. Kukhta AV, Kolesnik EE, Lesnikovich AI et al (2006) Optical and electrophysical properties of Ag-PEPC nanocomposites. Mater Sci Eng C 26:1012–1016. doi: 10.1016/j.msec.2005.09.041 CrossRefGoogle Scholar
  8. Liu P, Zhao MF (2009) Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Appl Surf Sci 255:3989–3993. doi: 10.1016/j.apsusc.2008.10.094 CrossRefADSGoogle Scholar
  9. Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46:1497–1505. doi: 10.1016/j.carbon.2008.06.048 CrossRefGoogle Scholar
  10. Manuel AM, Catarina S, Maria MA et al (2007) Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species. J Colloid Interface Sci 318:210–216. doi: 10.1016/j.jcis.2007.10.008 Google Scholar
  11. Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F et al (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348. doi: 10.1007/s11051-008-9428-6 CrossRefGoogle Scholar
  12. Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106. doi: 10.1126/science.275.5303.1102 CrossRefPubMedGoogle Scholar
  13. Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688. doi: 10.1021/jp001761r CrossRefGoogle Scholar
  14. Sepulveda-Guzman S, Elizondo-Villarreal N, Ferrer D et al (2007) In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18:335604–335609. doi: 10.1088/0957-4484/18/33/335604 CrossRefGoogle Scholar
  15. Shah PS, Holmes JD, Doty RC et al (2000) Steric stabilization of nanocrystals in supercritical CO2 using fluorinated ligands. J Am Chem Soc 122:4245–4246. doi: 10.1021/ja9943748 CrossRefGoogle Scholar
  16. Shrivastava S, Bera T, Roy A et al (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103–225111. doi: 10.1088/0957-4484/18/22/225103 CrossRefADSGoogle Scholar
  17. Wang X, Zhuang J, Peng Q et al (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124. doi: 10.1038/nature03968 CrossRefPubMedADSGoogle Scholar
  18. Wang HH, Liu CY, Wu SB et al (2006) Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 18:491–495. doi: 10.1002/adma.200501875 CrossRefGoogle Scholar
  19. Yonezawa T, Onoue S, Kimizuka N (2001) Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles. Adv Mater 13:140–142. doi: 10.1002/1521-4095(200101)13:2<140::AID-ADMA140>3.0.CO;2-H CrossRefGoogle Scholar
  20. Zhang ZT, Zhao B, Hu LM (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110. doi: 10.1006/jssc.1996.0015 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations