Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1349–1354 | Cite as

Synthesis of Si nanoparticles with narrow size distribution by pulsed laser ablation

Research Paper


We synthesized Si nanoparticles by pulsed nanosecond-laser ablation. We applied a positive voltage bias during laser irradiation and effectively reduced size distribution. Scanning electron micrographs of samples showed the nanoparticles to be highly non-agglomerated. Si nanoparticles have the average diameter of 4–5 nm, the geometrical standard deviation of 1.35, and the density of 1.6 × 1012/cm2. A MOS device showed excellent charge trap behavior with a flat-band voltage shift over 7 V, which can be applied for memory device applications.


Si nanoparticle Pulsed laser ablation Size distribution HV bias Nanomanufacturing 


  1. Amoruso S, Bruzzese R, Spinelli N, Velotta R (1999) Characterization of laser-ablation plasmas. J Phys B 32:R131–R172. doi: 10.1088/0953-4075/32/14/201 CrossRefADSGoogle Scholar
  2. Bulgakova NM, Stoian R, Rosenfeld A, Hertel IV, Campbell EEB (2004) Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Phys Rev B 69:054102-1–054102-12. doi: 10.1103/PhysRevB.69.054102 CrossRefADSGoogle Scholar
  3. Franklin SR, Thareja RK (2005) Simulation of cluster formation in laser-ablated silicon plumes. J Appl Phys 97:123303-1–123303-6. doi: 10.1063/1.1931028 ADSGoogle Scholar
  4. Gouriet K, Zhigilei LV, Itina TE (2009) Molecular dynamics study of nanoparticle evolution in a background gas under laser ablation conditions. Appl Surf Sci 255:5116–5119. doi: 10.1016/j.apsusc.2008.07.097 CrossRefADSGoogle Scholar
  5. Hontanon E, Kruis FE (2009) A differential mobility analyzer (DMA) for size selection of nanoparticles at high flow rates. Aerosol Sci Technol 43:25–37. doi: 10.1080/02786820802446812 CrossRefGoogle Scholar
  6. Kiss LB, Söderlund J, Niklasson GA, Granqvist CG (1999) New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology 10:25–28. doi: 10.1088/0957-4484/10/1/006 CrossRefADSGoogle Scholar
  7. Makino T, Suzuki N, Yamada Y, Yoshida T, Seto T, Aya N (1999) Size classification of Si nanoparticles formed by Pulsed Laser Ablation in helium background gas. Appl Phys A 69:S243–S247. doi: 10.1007/s003399900303 ADSGoogle Scholar
  8. Marine W, Bulgakova NM, Patrone L, Ozerov I (2008) Insight into electronic mechanisms of nanosecond-laser ablation of silicon. J Appl Phys 103:094902. doi: 10.1063/1.2903527 CrossRefADSGoogle Scholar
  9. Muramoto J, Sakamoto I, Nakata Y, Okada T, Maeda M (1999) Influence of electric field on the behavior of Si nanoparticles generated by laser ablation. Appl Phys Lett 75:751–753. doi: 10.1063/1.124501 CrossRefADSGoogle Scholar
  10. Nichols WT, Malyavanatham G, Henneke DE, Brook JR, Becker MF, Keto JW, Glicksman HD (2000) Gas and pressure dependence for the mean size of nanoparticles produced by laser ablation of flowing aerosols. J Nanopart Res 2:141–145. doi: 10.1023/A:1010014004508 CrossRefGoogle Scholar
  11. Nichols WT, Keto JW, Henneke DE, Brock JR, Malyavanatham G, Becker MF, Glicksman HD (2001) Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol. Appl Phys Lett 78:1128–1130. doi: 10.1063/1.1347385 CrossRefADSGoogle Scholar
  12. Ohyanagi T, Miyashita A, Murakami K, Yoda O (1994) Time-and-space resolved X-ray absorption spectroscopy of laser-ablated Si particles. Jpn J Appl Phys 33:2586–2592. doi: 10.1143/JJAP.33.2586 CrossRefADSGoogle Scholar
  13. Ostraat ML, De Blauwe JW, Green ML, Bell LD, Atwater HA, Flagan RC (2001) Ultraclean two-stage aerosol reactor for production of oxide-passivated silicon nanoparticles for novel memory devices. J Electrochem Soc 148:G265–G270. doi: 10.1149/1.1360210 CrossRefGoogle Scholar
  14. Peterlongo A, Miotello A, Kelly R (1994) Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 50:4716–4727. doi: 10.1103/PhysRevE.50.4716 PubMedGoogle Scholar
  15. Raizer YP (1960) Condensation of a cloud of vaporised matter expanding in a vacuum. Sov Phys JETP 37:1229–1235Google Scholar
  16. Sakka T, Hotta K, Kuroyanagi A, Akiba S, Mabuchi M, Ogata YH (1998) Characteristics of the species ablated from silicon surface by pulsed CO2 laser irradiation. Jpn J Appl Phys 37:2666–2669. doi: 10.1143/JJAP.37.2666 CrossRefADSGoogle Scholar
  17. Shinn GB, Steigerwald F, Stiegler H, Sauerbrey R, Tittel FK, Wilson WL Jr (1986) Excimer laser photoablation of silicon. J Vac Sci Technol B 4:1273–1277. doi: 10.1116/1.583505 CrossRefGoogle Scholar
  18. Stoian R, Rosenfeld A, Ashkenasi D, Hertel IV, Bulgakova NM, Campbell EEB (2002) Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys Rev Lett 88:097603-1–097603-4. doi: 10.1103/PhysRevLett.88.097603 CrossRefADSGoogle Scholar
  19. Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé EF, Chan K (1996) A silicon nanocrystals based memory. Appl Phys Lett 68:1377–1379. doi: 10.1063/1.116085 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Semiconductor R&D CenterSamsung Electronics Co., Ltd.YonginKorea
  2. 2.Samsung Advanced Institute of TechnologyYonginKorea

Personalised recommendations