Journal of Nanoparticle Research

, Volume 12, Issue 3, pp 985–992 | Cite as

Fabrication of optically tunable silica nanocapsules containing Ag/Au nanostructures by confined galvanic replacement reaction

Research Paper


Silica nanocapsules containing Ag/Au alloy nanostructures (SNCAs) are fabricated by galvanic replacement (GR) reactions between silver core nanoparticles within silica shells and aqueous HAuCl4 in a confined nano-space. The structure and morphology of the resulting SNCAs are diversified by controlling the relative amount of Ag/Au, exhibiting tunable optical absorptions in visible region. The GR reactions in a confined nano-space include alloying and de-alloying processes that determine the evolution of morphology and optical absorption of SNCAs.

Graphical abstract

Silica nanocapsules containing Ag/Au alloy nanostructures with tunable optical properties are fabricated by confined galvanic replacement reactions between silver core nanoparticles with silica shells and aqueous HAuCl4 in a confined nano-space.


Alloys Galvanic replacement reaction Gold/Silver Nanostructures Silica Silver Sol–gel materials Nanomanufacturing 



This study was supported by grants-in-aid for the National Core Research Centre Program MOST/KOSEF (R15-2006-022-01001-0), Brain Korea 21 program (BK21), and the World Class University Program (No. R32-2008-000-10174-0).


  1. Arnal PM, Comotti M, Schiith F (2006) High-temperature-stable catalysts by hollow sphere encapsulation. Angew Chem Int Ed 45:8224–8227. doi: 10.1002/anie.200603507 CrossRefGoogle Scholar
  2. Cavaliere-Jaricot S, Darbandia M, Nann T (2007) Au–silica nanoparticles by reverse synthesis of cores in hollow silica shells. Chem Commun (Camb) 2031–2033. doi: 10.1039/b703811a
  3. Deng Z, Chen M, Zhou S, You B, Wu L (2006) A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 22:6403–6407. doi: 10.1021/la060944n CrossRefPubMedGoogle Scholar
  4. Gao Y, Ding X, Zheng Z, Cheng X, Peng Y (2007) Template-free method to prepare polymer nanocapsules embedded with noble metal nanoparticles. Chem Commun (Camb) 3720–3722. doi: 10.1039/b706490j
  5. Jagielski N, Sharma S, Hombach V, Mailänder V, Rasche V, Landfester K (2007) Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials. Macromol Chem Phys 208:2229–2241. doi: 10.1002/macp.200700254 CrossRefGoogle Scholar
  6. Kamata K, Lu Y, Xia Y (2003) Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J Am Chem Soc 125:2384–2385. doi: 10.1021/ja0292849 CrossRefPubMedGoogle Scholar
  7. Kim M, Sohn K, Na HB, Hyeon T (2002) Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Lett 2:1383–1387. doi: 10.1021/nl025820j CrossRefADSGoogle Scholar
  8. Liu Y, Miyoshi H, Nakamura M (2007) Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells: preparation and fluorescein isothiocyanate (FITC) release kinetics. Colloids Surf B Biointerfaces 58:180–187. doi: 10.1016/j.colsurfb.2007.03.005 CrossRefPubMedGoogle Scholar
  9. Lu X, Tuan HY, Chen J, Li ZY, Korgel BA, Xia Y (2007) Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J Am Chem Soc 129:1733–1742. doi: 10.1021/ja067800f CrossRefPubMedGoogle Scholar
  10. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2:1235–1237. doi: 10.1021/nl025774n CrossRefADSGoogle Scholar
  11. Moskovits M, Srnová-Šloufová I, Vlčková B (2002) Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116:10435–10446. doi: 10.1063/1.1449943 CrossRefADSGoogle Scholar
  12. Rodríguez-González B, Burrows A, Watanabe M, Kiely CJ, Marzán LML (2005) Multishell bimetallic Au/Ag nanoparticles: synthesis, structure and optical properties. J Mater Chem 15:1755–1759. doi: 10.1039/b500556f CrossRefGoogle Scholar
  13. Sieradzki K (1993) Curvature effects in alloy dissolution. J Electrochem Soc 140:2868–2872. doi: 10.1149/1.2220924 CrossRefGoogle Scholar
  14. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  15. Sun B, Chiu DT (2004) Synthesis, loading, and application of individual nanocapsules for probing single-cell signaling. Langmuir 20:4614–4620. doi: 10.1021/la0364340 CrossRefPubMedGoogle Scholar
  16. Sun Y, Xia Y (2003) Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett 3:1569–1572. doi: 10.1021/nl034765r CrossRefADSGoogle Scholar
  17. Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901. doi: 10.1021/ja039734c CrossRefPubMedGoogle Scholar
  18. Sun Y, Wiley B, Li Z-Y, Xia Y (2004) Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J Am Chem Soc 126:9399–9406. doi: 10.1021/ja048789r CrossRefPubMedGoogle Scholar
  19. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. N J Chem 22:1179–1201. doi: 10.1039/a805753b CrossRefGoogle Scholar
  20. Trewyn BG, Giri S, Slowing II, Lin VS (2007) Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun (Camb) 3236–3245. doi: 10.1039/b701744h
  21. Wiley B, Sun Y, Chen J, Cang H, Li Z, Li X, Xia Y (2005) Shape-controlled synthesis of silver and gold nanostructures. MRS Bull 30:356–361Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and EngineeringPusan National UniversityPusanKorea

Personalised recommendations