Journal of Nanoparticle Research

, Volume 12, Issue 3, pp 931–938 | Cite as

Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film

  • Mohammod Aminuzzaman
  • Akira Watanabe
  • Tokuji Miyashita
Research Paper


This article describes fabrication of Ag micropatterns on a flexible polyimide (PI) film by laser direct writing using an Ag nanoparticle-dispersed film as a precursor. Ag micropatterns are characterized by optical microscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), surface profilometry, and resistivity measurements. The line width of Ag micropatterns can be effectively controlled by altering the experimental parameters of laser direct writing especially laser intensity, objective lens, and laser beam scanning speed etc. Using an objective lens of 100× and laser intensity of 170.50 kW/cm2, Ag micropatterns with a line width of about 6 μm have been achieved. The Ag micropatterns show strong adhesion to polyimide surface as evaluated by Scotch-tape test. The resistivity of the Ag micropatterns is determined to be 4.1 × 10−6 Ω cm using two-point probe method. This value is comparable with the resistivity of bulk Ag (1.6 × 10−6 Ω cm).


Flexible electronics Polymer Laser direct writing Nanometal ink Micropatterns Resistivity Nanomanufacturing 



This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan. This work was also partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan. Special thanks to Mr. T. Suzuki for his assistance measuring SEM.


  1. Aminuzzaman M, Watanabe A, Miyashita T (2008) Photochemical surface modification and characterization of double-decker-shaped polysilsesquioxane hybrid thin films. J Mater Chem 18:5092–5097CrossRefGoogle Scholar
  2. Buffat PA, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298. doi: 10.1103/PhysRevA.13.2287 CrossRefADSGoogle Scholar
  3. Huang D, Liao F, Molesa S, Redinger SD, Subramanian V (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:G412–G417CrossRefGoogle Scholar
  4. Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Xia Y, Moon J (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater 18:679–686. doi: 10.1002/adfm.200700902 CrossRefGoogle Scholar
  5. Kharlampieva E, Slocik J, Tsukruk T, Naik RR, Tsukruk VV (2008) Polyaminoacid-induced growth of metal nanoparticles on layer-by-layer templates. Chem Mater 20:5822–5831. doi: 10.1021/cm801475v CrossRefGoogle Scholar
  6. Kim D, Jeong S, Moon J, Kang K (2006a) Ink-jet printing of silver conductive tracks on flexible substrates. Mol Cryst Liq Cryst 459:45–55Google Scholar
  7. Kim D, Jeong S, Park BK, Moon J (2006b) Direct drawing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl Phys Lett 89:264101-1–264101-3ADSGoogle Scholar
  8. Ko SH, Park I, Pan H, Grigoropoulos CP, Pisano AP, Luscombe CK, Fréchet JM (2007a) Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 7:1869–1877. doi: 10.1021/nl070333v CrossRefPubMedADSGoogle Scholar
  9. Ko SH, Chung J, Pan H, Grigoropoulos CP, Poulikakos D (2007b) Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature processing. Sens Actuators A 134:161–168CrossRefGoogle Scholar
  10. Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Frèchet JMJ, Poulikakos D (2007c) Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl Phys Lett 90:141103-1–141103-3ADSGoogle Scholar
  11. Ko SH, Pan H, Grigoropoulos CP, Frèchet JMJ, Luscombe CK, Poulikakos D (2008) Lithography-free high-resolution organic transistor arrays on polymer substrate by low energy selective ablation of inkjet-printed nanoparticle film. Appl Phys A 92:579–587CrossRefADSGoogle Scholar
  12. Lee KJ, Jun BH, Kim TH, Joung J (2006) Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17:2424–2428. doi: 10.1088/0957-4484/17/9/060 CrossRefADSGoogle Scholar
  13. Lee Y, Choi J, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19:415604–415610. doi: 10.1088/0957-4484/19/41/415604 CrossRefGoogle Scholar
  14. Li Y, Wu Y, Ong BS (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127:3266–3276. doi: 10.1021/ja043425k CrossRefPubMedGoogle Scholar
  15. Li F, Zhu M, Liu C, Zhou W, Wiley JB (2006) Patterned metal nanowire arrays from photolithographically-modified templates. J Am Chem Soc 128:13342–13343. doi: 10.1021/ja0647856 CrossRefPubMedGoogle Scholar
  16. Meitl MA, Zhou YX, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA (2004) Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett 4:1643–1647. doi: 10.1021/nl0491935 CrossRefADSGoogle Scholar
  17. Mitsuishi M, Matsui J, Miyashita T (2006) Functional organized molecular assemblies based on polymer nanosheets. Polym J 38:877–896. doi: 10.1295/polymj.PJ2006069 CrossRefGoogle Scholar
  18. Mitsuishi M, Matsui J, Miyashita T (2009) Photofunctional thin film devices composed of polymer nanosheet assemblies. J Mater Chem 19:325–329. doi: 10.1039/b805735b CrossRefGoogle Scholar
  19. Nguyen BT, Gautrot JE, Nguyen MT, Zhu XX (2007) Nitrocellulose-stabilized silver nanoparticles as low conversion temperature precursors useful for inkjet printed applications. J Mater Chem 17:1725–1730. doi: 10.1039/b616446c CrossRefGoogle Scholar
  20. Perelaer J, de Ganas BJ, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101–2104CrossRefGoogle Scholar
  21. Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157. doi: 10.1021/nl801495p CrossRefPubMedADSGoogle Scholar
  22. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surface for electronic, optical, and sensor applications. ChemPhysChem 1:18–52. doi: 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L CrossRefGoogle Scholar
  23. Sirringhaus H, Shimoda T (2003) Inkjet printing of functional materials. MRS Bull 28:802–803Google Scholar
  24. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistors circuits. Science 290:2123–2126CrossRefPubMedADSGoogle Scholar
  25. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–731. doi: 10.1039/b711984d CrossRefGoogle Scholar
  26. van Osch THJ, Perelaer J, de Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20:343–345. doi: 10.1002/adma.200701876 CrossRefGoogle Scholar
  27. Watanabe A, Miyashita T (2007) Formation of copper micro-wiring by laser direct writing. J Photopolym Sci Technol 20:115–116CrossRefGoogle Scholar
  28. Watanabe A, Kobayashi Y, Konno M, Yamada S, Miwa T (2005) Direct drawing of Ag microwiring by laser-induced pyrolysis of film prepared from liquid-dispersed metal nanoparticles. Jpn J Appl Phys 44:L740–L742CrossRefADSGoogle Scholar
  29. Watanabe A, Kobayashi Y, Konno M, Yamada S, Miwa T (2007) Direct drawing of submicron wiring by laser-induced pyrolysis of film prepared from liquid-dispersed metal nanoparticles. Mol Cryst Liq Cryst 464:161–176CrossRefGoogle Scholar
  30. Wu C, Zeng T (2007) Size-tunable synthesis of metallic nanoparticles in a continuous and steady-flow reactor. Chem Mater 19:123–125. doi: 10.1021/cm062344f CrossRefADSGoogle Scholar
  31. Xie J, Zhang Q, Lee JY, Wang DIC (2007) General method for extend metal nanowire synthesis: ethanol induced self-assembly. J Phys Chem C 111:17158–17162. doi: 10.1021/jp0768120 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mohammod Aminuzzaman
    • 1
  • Akira Watanabe
    • 1
  • Tokuji Miyashita
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendaiJapan

Personalised recommendations