Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 623–633 | Cite as

Nanocrystalline oxide (Y2O3, Dy2O3, ZrO2, NiO) coatings on BaTiO3 submicron particles by precipitation

  • Alessio Bassano
  • Vincenzo Buscaglia
  • Mohamed Sennour
  • Maria Teresa Buscaglia
  • Massimo Viviani
  • Paolo Nanni
Research Paper


Nanocoatings (5–20 nm) of different compounds on fine BaTiO3 particles were obtained by means of precipitation processes. Homogeneous and smooth shells of Y(OH)CO3 and Dy(OH)CO3 were grown from nitrate solutions in the presence of urea. An irregular coating consisting of zirconia nanoparticles was produced from zirconyl nitrate solution using ammonia as a precipitating agent after adsorption of a polymeric polyelectrolyte on the BaTiO3 surface. Composite particles with a peculiar morphology were obtained by inducing heterogeneous nucleation and growth of Ni(OH)2 lamellae on the BaTiO3 surface. The different shells can be transformed in a nanocrystalline coating of the corresponding oxide (Y2O3, Dy2O3, ZrO2, NiO) by calcination at moderate temperatures (400–700 °C). The overall results indicate that precipitation from solution represents a versatile process to grow a second-phase layer on the surface of BaTiO3 particles. This approach can be used as an alternative to mechanical wet mixing for controlled doping of ferroelectric materials and for the fabrication of composite materials with specific geometry of the two-phase assembly.


Core–shell particles Coating Dielectrics Ferroelectrics Barium titanate Nanolayer Composite materials 



Partial financial support from the Ministero dell’Università e della Ricerca (FISR Project “Nanosistemi inorganici ed ibridi per lo sviluppo e l’innovazione di celle a combustibile”) is gratefully acknowledged.


  1. Aiken B, Hsu WP, Matjievic E (1988) Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium(III) and mixed yttrium(III)/cerium(III) systems. J Am Ceram Soc 71:845–853. doi: 10.1111/j.1151-2916.1988.tb07534.x CrossRefGoogle Scholar
  2. Armstrong TR, Morgens LE, Maurice AK, Buchanan RC (1989) Effect of zirconia on microstructure and dielectric properties of barium titanate ceramics. J Am Ceram Soc 72:605–611. doi: 10.1111/j.1151-2916.1989.tb06182.x CrossRefGoogle Scholar
  3. Armstrong TR, Young KA, Buchanan RC (1990) Dielectric properties of fluxed barium titanate ceramics with zirconia additions. J Am Ceram Soc 73:700–706. doi: 10.1111/j.1151-2916.1990.tb06575.x CrossRefGoogle Scholar
  4. Aymonier C, Elissalde C, Reveron H, Weill F, Maglione M, Cansell F (2005) Supercritical fluid technology of nanoparticle coating for new ceramic materials. J Nanosci Nanotechnol 5:980–983. doi: 10.1166/jnn.2005.147 CrossRefPubMedGoogle Scholar
  5. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, BostonGoogle Scholar
  6. Bruno AS, Swanson DK (1993) High-performance multilayer capacitor dielectrics from chemically prepared powders. J Am Ceram Soc 76:1233–1241. doi: 10.1111/j.1151-2916.1993.tb03747.x CrossRefGoogle Scholar
  7. Buscaglia MT, Viviani M, Zhao Z, Buscaglia V, Nanni P (2006) Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chem Mater 18:4002–4010. doi: 10.1021/cm060403j CrossRefGoogle Scholar
  8. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22. doi: 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N CrossRefGoogle Scholar
  9. Caruso RA, Antonietti M (2001) Sol–gel nanocoating: an approach to the preparation of structured materials. Chem Mater 13:3272–3282. doi: 10.1021/cm001257z CrossRefGoogle Scholar
  10. Fengqiu T, Xiaoxian H, Yufeng Z, Jingkun G (2000) Effect of dispersants on surface chemical properties of nano-zirconia suspensions. Ceram Int 26:93–97. doi: 10.1016/S0272-8842(99)00024-3 CrossRefGoogle Scholar
  11. Hennings D, Rosenstein G (1984) Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J Am Ceram Soc 67:249–254CrossRefGoogle Scholar
  12. Huber C, Treguer-Delapierre M, Elissalde C, Weill F, Maglione M (2003) New application of the core-shell concept to ferroelectric nanopowders. J Mater Chem 13:650–653. doi: 10.1039/b300991b CrossRefGoogle Scholar
  13. Kahn M (1971) Influence of grain growth on dielectric properties of Nb-doped BaTiO3. J Am Ceram Soc 54:455–457. doi: 10.1111/j.1151-2916.1971.tb12384.x CrossRefGoogle Scholar
  14. Kawahashi N, Matjievic E (1990) Preparation and properties of uniform coated colloidal particles V. Yttrium basic carbonate on polystyrene latex. J Colloid Interface Sci 138:534–542. doi: 10.1016/0021-9797(90)90235-G CrossRefGoogle Scholar
  15. Kim J-N, Byun T-S, Kim C-S, Kim Y-J, Choi C-S (2005) Preparation of core-shell BaTiO3 particles coated with MgO. J Chem Eng Jpn 38:553–557. doi: 10.1252/jcej.38.553 CrossRefGoogle Scholar
  16. Kirby SD, Lee M, van Dover RB (2007) An approach to achieving a negative index of refraction using coincident resonances. J Phys D 40:1161–1166. doi: 10.1088/0022-3727/40/4/038 CrossRefADSGoogle Scholar
  17. Liang Z-H, Zhu Y-J, Hu X-L (2004) β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. J Phys Chem B 108:3488–3491. doi: 10.1021/jp037513n CrossRefGoogle Scholar
  18. Matjievic E, Hsu WP (1987) Preparation and properties of monodispersed colloidal particles of lanthanide compounds I. Gadolinium, europium, terbium, samarium and cerium(III). J Colloid Interface Sci 118:506–523. doi: 10.1016/0021-9797(87)90486-3 CrossRefGoogle Scholar
  19. Meyer M, Bée A, Talbot D, Cabuil V, Boyer JM, Répetti B, Garrigos R (2004) Synthesis and dispersion of Ni(OH)2 platelet-like nanoparticles in water. J Colloid Interface Sci 277:309–315. doi: 10.1016/j.jcis.2004.04.034 CrossRefPubMedGoogle Scholar
  20. Mornet S, Elissalde C, Hornebecq V, Bidault O, Duguet E, Brisson A, Maglione M (2005) Controlled growth of silica shell on Ba0.6Sr0.4TiO3 nanoparticles used as precursors of ferroelectric composites. Chem Mater 17:4530–4536. doi: 10.1021/cm050884r CrossRefGoogle Scholar
  21. Moulson AJ, Herbert JM (1990) Electroceramics. Chapman and Hall, LondonGoogle Scholar
  22. Neubrand A, Lindner R, Hoffmann P (2000) Room-temperature solubility behavior of barium titanate in aqueous media. J Am Ceram Soc 83:860–864Google Scholar
  23. Park JS, Han YH (2006) Effects of oxide additives coating on microstructure and dielectric properties of BaTiO3. J Electroceram 17:867–873. doi: 10.1007/s10832-006-5413-6 CrossRefGoogle Scholar
  24. Park JS, Han YH (2007) Effects of MgO coating on microstructure and dielectric properties of BaTiO3. J Eur Ceram Soc 27:1077–1082. doi: 10.1016/j.jeurceramsoc.2006.05.073 CrossRefGoogle Scholar
  25. Park JS, Han MH, Han YH (2007) Effects of MgO coating on the sintering behavior and dielectric properties of BaTiO3. Mater Chem Phys 104:261–266. doi: 10.1016/j.matchemphys.2007.02.092 CrossRefGoogle Scholar
  26. Rae A, Chu M, Ganine V (1999) Barium titanate—past, present and future. In: Nair KM, Bhalla AS (eds) Dielectric ceramic materials, ceramic transactions, vol 100. The American Ceramic Society, Westerville (OH), pp 1–12Google Scholar
  27. Rao SP, Tripathy SS, Raichur AM (2007) Dispersion studies of sub-micron zirconia using Dolapix CE 64. Colloids Surf A 302:553–558. doi: 10.1016/j.colsurfa.2007.03.034 CrossRefGoogle Scholar
  28. Reynolds TG III (2001) Application space influences electronic ceramic materials. Am Ceram Soc Bull 80:29–33Google Scholar
  29. Sprycha R, Jablonski J, Matjievic E (1992) Zeta potential and surface charge of monodispersed colloidal yttrium(III) oxide and basic carbonate. J Colloid Interface Sci 149:561–568. doi: 10.1016/0021-9797(92)90443-P CrossRefGoogle Scholar
  30. Tok HAIY, Boey FYC, Huebner R, Ng SH (2006) Synthesis of dysprosium oxide by homogeneous precipitation. J Electroceram 17:75–78. doi: 10.1007/s10832-006-9940-y CrossRefGoogle Scholar
  31. Tripathy SS, Raichur AM (2008) Dispersibility of barium titanate suspension in the presence of polyelectrolytes: a review. J Dispers Sci Technol 29:230–239. doi: 10.1080/01932690701707423 CrossRefGoogle Scholar
  32. Wang S-F, Dayton GO (1999) Dielectric properties of fine-grained barium titanate based X7R materials. J Am Ceram Soc 82:2677–2682CrossRefGoogle Scholar
  33. Wang X, Li L, Zhang Y, Wang S, Zhang Z, Fei L, Qian Y (2006) High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance. Cryst Growth Des 6:2163–2165. doi: 10.1021/cg060156w CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alessio Bassano
    • 1
    • 2
  • Vincenzo Buscaglia
    • 2
  • Mohamed Sennour
    • 3
  • Maria Teresa Buscaglia
    • 2
  • Massimo Viviani
    • 2
  • Paolo Nanni
    • 1
    • 2
  1. 1.Department of Chemical and Process EngineeringUniversity of GenoaGenoaItaly
  2. 2.Institute for Energetics and InterphasesNational Research CouncilGenoaItaly
  3. 3.Centre des MatériauxEcole des Mines de ParisEvryFrance

Personalised recommendations