Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 417–427 | Cite as

Sonochemical synthesis of nanostructured VOPO4 · 2H2O/carbon nanotube composites with improved lithium ion battery performance

  • Yongfu Sun
  • Changzheng Wu
  • Yi Xie
Research Paper


Transition metal phosphates have become of great interest as cathode materials for lithium ion batteries because of their high voltage, low cost and environmental friendliness. However, their low-intrinsic conductivity presents a major drawback to practical implementation. Here, nanocrystallization of VOPO4 · 2H2O was first realized by a sonication-assisted intercalation-split mechanism in order to increase its diffusion coefficient and surface area contacting with electrolyte thus improving its capacity and cyclability; then nanocompounding of the above split nanocrystals and acid-functionalized multiwalled carbon nanotubes to form the resulting nanocomposites was successfully achieved by an adsorption-reintercalation mechanism to increase their conductivity thus enabling them to discharge at high rate with high efficiency. As expected, nanosized VOPO4 · 2H2O possesses longer discharge plateau (average discharge voltage: 3.7 V), higher capacity (93.4% of the theoretical capacity) and much better cyclability (retain 95.1% of the first discharge capacity after 50 cycles) than microsized VOPO4 · 2H2O. Furthermore, the relatively high-rate capability of the nanocomposites, retaining 83% of the first discharge capacity, is remarkably improved compared with VOPO4 · 2H2O microcrystals (retain only 31.7%). In brief, the use of nanocrystallization and nanocompounding techniques enables the high voltage, low cost, environmentally benign VOPO4 · 2H2O to show the prospective signs for the future practical applications.


Lithium ion battery VOPO4 · 2H2Multiwalled carbon nanotubes Nanocrystallization Nanocompounding Nanocomposites 



This work is financially supported by the National Natural Science Foundation of China (NO.20621061).


  1. Arico AS, Bruce P, Scrosatl B, Tarascon JM, Schalkwljk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi: 10.1038/nmat1368 CrossRefPubMedADSGoogle Scholar
  2. Beneš L, Melánová K, Zima V, Kalousová J, Votinský J (1997) Preparation and probable structure of layered complexes of vanadyl phosphate with 1-alkanols and 1, omega-alkanediols. Inorg Chem 36:2850–2854. doi: 10.1021/ic970073s CrossRefPubMedGoogle Scholar
  3. Beneš L, Melánová K, Trchová M, Čapková P, Matĕjka P (1999) Water/ethanol displacement reactions in vanadyl phosphate. Eur J Inorg Chem 12:2289–2294Google Scholar
  4. Beneš L, Zima V, Melánová K (2001) 2-alkanol intercalated VOPO4 and NbOPO4: Structure modeling of intercalate layers. J Incl Phenom Mol Recognit Chem 40:131–138. doi: 10.1023/A:1011110326675 CrossRefGoogle Scholar
  5. Beneš L, Melánová K, Zima V, Trchová M, Čapková P, Matĕjka P, Koudelka B (2006) Intercalation of lactones into vanadyl phosphate. J Phys Chem Solids 67:956–964. doi: 10.1016/j.jpcs.2006.01.009 CrossRefADSGoogle Scholar
  6. Correa-Duarte MA, Sobal N, Liz-Marzán LM, Giersig M (2004) Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates. Adv Mater 16:2179–2184. doi: 10.1002/adma.200400626 CrossRefGoogle Scholar
  7. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99. doi: 10.1021/cm030347b CrossRefGoogle Scholar
  8. Dupré N, Gaubicher J, Le Mercier T, Wallez G, Angenault J, Quarton M (2001) Positive electrode materials for lithium batteries based on VOPO4. Solid State Ion 140:209–221. doi: 10.1016/S0167-2738(01)00818-9 CrossRefGoogle Scholar
  9. Ellis B, Herle PS, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Nanostructured materials for lithium-ion batteries: surface conductivity vs. bulk ion/electron transport. Faraday Discuss 134:119–141. doi: 10.1039/b602698b CrossRefPubMedGoogle Scholar
  10. Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid. Solid State Ion 176:1801–1805. doi: 10.1016/j.ssi.2005.04.034 CrossRefGoogle Scholar
  11. Goodenough JB, Padhi AK, Masquelier C, Nanjundaswamy KS (1997) U.S. Patent 08:840–523Google Scholar
  12. Hu SG, Wang T, Qu XH, Dong SJ (2006) In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. J Phys Chem B 110:853–857. doi: 10.1021/jp055834o CrossRefPubMedGoogle Scholar
  13. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966. doi: 10.1002/adma.200700697 CrossRefGoogle Scholar
  14. Huang H, Nazar LF (2001) Grafted metal oxide/polymer/carbon nanostructures exhibiting fast transport properties. Angew Chem Int Ed 40:3880–3884. doi: 10.1002/1521-3773(20011015)40:20<3880::AID-ANIE3880>3.0.CO;2-V CrossRefGoogle Scholar
  15. Kamiya Y, Yamamoto N, Imai H, Komai S, Okuhara T (2005) Mesostructured vanadium phosphorus oxides assembled with exfoliated VOPO4 nanosheets. Microporous Mesoporous Mater 81:49–57CrossRefGoogle Scholar
  16. Kim B, Sigmund WM (2004) Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir 20:8239–8242. doi: 10.1021/la049424n CrossRefPubMedGoogle Scholar
  17. Kim DW, Ko YD, Park JG, Kim BK (2007) Formation of lithium-driven active/inactive nanocomposite electrodes based on Ca3Co4O9 nanoplates. Angew Chem Int Ed 46:6654–6657. doi: 10.1002/anie.200701628 CrossRefGoogle Scholar
  18. Ladwig G (1965) Über die konstitution des VPO5(·nH2O). Z Anorg Allg Chem 338:266–278. doi: 10.1002/zaac.19653380506 CrossRefGoogle Scholar
  19. Li BX, Xu Y, Rong GX, Jing M, Xie Y (2006) Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17:2560–2566. doi: 10.1088/0957-4484/17/10/020 CrossRefADSGoogle Scholar
  20. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ion 92:1–10. doi: 10.1016/S0167-2738(96)00472-9 CrossRefGoogle Scholar
  21. Padhi AK, Nanjundaswamy KS, Googenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi: 10.1149/1.1837571 CrossRefGoogle Scholar
  22. Park NG, Kim KM, Chang SH (2001) Sonochemical synthesis of the high energy density cathode material VOPO4·2H2O. Electrochem Commun 3:553–556. doi: 10.1016/S1388-2481(01)00217-X CrossRefGoogle Scholar
  23. Park MS, Needham SA, Wang GX, Kang YM, Park JS, Dou SX, Liu HK (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19:2406–2410. doi: 10.1021/cm0701761 CrossRefGoogle Scholar
  24. Sides CR, Martin CR (2005) Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv Mater 17:125–128. doi: 10.1002/adma.200400517 CrossRefGoogle Scholar
  25. Tietze HR (1981) The crystal and molecular structure of oxovanadium (V) orthophosphate dihydrate, VOPO4·2H2O. Aust J Chem 34:2035–2038Google Scholar
  26. Wang HY, Abe T, Maruyama S, Iriyama Y, Ogumi Z, Yoshikawa K (2005) Graphitized carbon nanobeads with an onion texture as a lithium-ion battery negative electrode for high-rate use. Adv Mater 17:2857–2860. doi: 10.1002/adma.200500320 CrossRefGoogle Scholar
  27. Wen ZH, Wang Q, Zhang Q, Li JH (2007) In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater 17:2772–2778. doi: 10.1002/adfm.200600739 CrossRefGoogle Scholar
  28. Wu CZ, Xie Y, Lei LY, Hu SQ, OuYang CZ (2006) Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv Mater 18:1727–1732. doi: 10.1002/adma.200600065 CrossRefGoogle Scholar
  29. Yamamoto N, Okuhara T, Nakato T (2001) Intercalation compound of VOPO4·2H2O with acrylamide: preparation and exfoliation. J Mater Chem 11:1858–1863. doi: 10.1039/b100040n CrossRefGoogle Scholar
  30. Yamamoto N, Hiyoshi N, Okuhara T (2002) Thin-layered sheets of VOHPO4·5H2O prepared from VOPO4·2H2O by intercalation-exfoliation-reduction in alcohol. Chem Mater 14:3882–3888. doi: 10.1021/cm020292y CrossRefGoogle Scholar
  31. Zima V, Vlcek M, Beneš L, Casciola M, Massinelli L, Palombari R (1996) Electrical-transport properties of hydrated and anhydrous vanadyl phosphate in the temperature range 20–200 degrees C. Chem Mater 8:2505–2509. doi: 10.1021/cm960217l CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations