Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 563–571 | Cite as

Controlled synthesis of photoluminescent Bi4Ti3O12 nanoparticles from metal-organic polymeric precursor

  • Jungang Hou
  • R. V. Kumar
  • Yuanfang Qu
  • Dalibor Krsmanovic
Research Paper


Bi4Ti3O12 (BIT) nanoparticles with a narrow average particle size distribution in the range of 11–46 nm was synthesized via a metal-organic polymeric precursor process. The crystallite size and lattice parameter of BIT were determined by XRD analysis. At annealing temperatures >550 °C, the orthorhombic BIT compound with lattice parameters a = 5.4489 Å, b = 5.4147 Å, and c = 32.8362 Å was formed while at lower annealing temperatures orthorhombicity was absent. Reaction proceeded via the formation of an intermediate phase at 500 °C with a stoichiometry close to Bi2Ti2O7. The particle size and the agglomerates of the primary particles have been confirmed by FESEM and TEM. The decomposition of the polymeric gel was ascertained in order to evaluate the crystallization process from TG-DSC analysis. Raman spectroscopy was used to investigate the lattice dynamics in BIT nanoparticles. In addition, investigation of the dependence of the visible emission band around the blue–green color emission on annealing temperatures and grain sizes showed that the effect of grain size plays important roles, and that oxygen vacancies may act as the radiative centers responsible for the observed visible emission band.


Bi4Ti3O12 Nanoparticles Metal-organic polymeric precursor Photoluminescence 



This work was supported in part by EPSRC and PCME Ltd. The authors gratefully acknowledge the CSC (China Scholarship Council), Government of People’s Republic of China, for providing financial assistance.


  1. Anilkumar M, Dhage SR, Ravi V (2004) Synthesis of bismuth titanate by the urea method. Mater Lett 59(4):514–516. doi: 10.1016/j.matlet.2004.10.038 CrossRefGoogle Scholar
  2. Aurivillius B (1949) Mixed bismuth oxides with layer lattices. Ark Kemi 1:463–470Google Scholar
  3. Bondurant DW, Gnadinger FP (1989) Ferroelectrics for nonvolatile RAMs. IEEE Spectr 26:30–33. doi: 10.1109/6.29346 CrossRefGoogle Scholar
  4. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324. doi: 10.1088/0034-4885/61/9/002 CrossRefADSGoogle Scholar
  5. Dhage SR, Khollam YB, Dhespande SB, Potdar HS, Ravi V (2004) Synthesis of bismuth titanate by citrate method. Mater Res Bull 39(13):1993–1998. doi: 10.1016/j.materresbull.2004.07.014 CrossRefGoogle Scholar
  6. Dorrian JF, Newnham RE, Smith DK, Kay MI (1971) Crystal structure of Bi4Ti3O12. Ferroelectrics 3:17–27Google Scholar
  7. Du YL, Fang JL, Zhang MS, Hong JM, Yin Z, Zhang QG (2002) Phase character and structural anomaly of Bi4Ti3O12 nanoparticles prepared by chemical coprecipitation. Mater Lett 57:802–806. doi: 10.1016/S0167-577X(02)00876-5 CrossRefGoogle Scholar
  8. Fu D, Suzuki H, Ishikawa K (2000) Size-induced phase transition in PbTiO3 nanocrystals:Raman scattering study. Phys Rev B 62:3125–3129. doi: 10.1103/PhysRevB.62.3125 CrossRefADSGoogle Scholar
  9. Graves PR, Hua G, Myhra S, Thompson JG (1995) The Raman modes of the Aurivillius phases: temperature and polarization dependence. J Solid State Chem 114:112–122. doi: 10.1006/jssc.1995.1017 CrossRefADSGoogle Scholar
  10. Gu HS, Kuang AX, Li XJ (1998) Reactions in preparing Bi4Ti3O12 ultrafine powders by sol–gel process. Ferroelectrics 211:271–280. doi: 10.1080/00150199808232348 CrossRefGoogle Scholar
  11. Hirata T, Yokokawa T (1997) Variable-temperature X-ray diffraction of the ferroelectric transition in Bi4Ti3O12. Solid State Commun 104:673–677. doi: 10.1016/S0038-1098(97)00401-8 CrossRefADSGoogle Scholar
  12. Horn JA, Zhang SC, Selvaraj U, Messing GL, Trolier-McKinstry S (1999) Templated grain growth of textured bismuth titanate. J Am Ceram Soc 82:921–926CrossRefGoogle Scholar
  13. Hou JG, Qu YF, Ma WB (2007a) Effect of CuO–Bi2O3 on low temperature sintered MnZn-ferrite by sol–gel auto-combustion method. J Sol Gel Sci Technol 44:15–20. doi: 10.1007/s10971-007-1600-4 CrossRefGoogle Scholar
  14. Hou JG, Qu YF, Ma WB, Shan D (2007b) Synthesis and piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics prepared by sol–gel auto-combustion method. J Mater Sci 42:6787–6791. doi: 10.1007/s10853-006-1429-1 CrossRefADSGoogle Scholar
  15. Idink H, Srikanth V, White WB, Subbarao EC (1994) Raman study of low temperature phase transitions in Bismuth titanate, Bi4Ti3O12. J Appl Phys 76:1819–1823. doi: 10.1063/1.357700 CrossRefADSGoogle Scholar
  16. Ishikawa K, Yoshikawa K, Okada N (1988) Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev B 37:5852–5855. doi: 10.1103/PhysRevB.37.5852 CrossRefADSGoogle Scholar
  17. Kan YM, Jin XH, Wang PL, Li YX, Cheng YB, Yan DS (2003) Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. Mater Res Bull 38:567–576. doi: 10.1016/S0025-5408(03)00029-1 CrossRefGoogle Scholar
  18. Kan YM, Jin XH, Zhang GJ, Wang PL, Cheng YB, Yan DS (2004) Lanthanum modified bismuth titanate prepared by a hydrolysis method. J Mater Chem 14:3566–3570. doi: 10.1039/b408149h CrossRefGoogle Scholar
  19. Kim CY, Sekino T, Niihara K (2003) Synthesis of bismuth sodium titanate nanosized powders by solution/sol–gel process. J Am Ceram Soc 86:1464–1467CrossRefGoogle Scholar
  20. Kimura T, Yoshimoto T, Iida N, Fujita Y, Yamaguchi T (1989) Mechanism of grain orientation during hot-pressing of bismuth titanate. J Am Ceram Soc 72:85–89. doi: 10.1111/j.1151-2916.1989.tb05958.x CrossRefGoogle Scholar
  21. Kojima S, Imaizumi R, Hamazaki S, Takashige M (1994) Raman scattering study of bismuth layer-structure ferroelectrics. Jpn J Appl Phys 33(Part 1):5559–5564. doi: 10.1143/JJAP.33.5559 CrossRefADSGoogle Scholar
  22. Liu WL, Xia HR, Han H, Wang XQ (2004) Structure and dielectric properties of bismuth titanate nanoparticles prepared by metalorganic decomposition method. J Cryst Growth 269:499–504. doi: 10.1016/j.jcrysgro.2004.05.089 CrossRefADSGoogle Scholar
  23. Meng JF, Huang YB, Zhang WF, Du ZL, Zhu ZQ, Zou GT (1995) Photoluminescence in nanocrystalline BaTiO3 and SrTiO3. Phys Lett A 205:72–76. doi: 10.1016/0375-9601(95)00533-9 CrossRefADSGoogle Scholar
  24. Osamu Y, Noboru M, Ken H (1991) The formation and characterization of alkoxy-derived Bi4Ti3O12. Br Ceram Trans J 90:111–113Google Scholar
  25. Potdar HS, Ravi V (2004) Synthesis of bismuth titanate by citrate method. Mater Res Bull 39:1993–1998. doi: 10.1016/j.materresbull.2004.07.014 CrossRefGoogle Scholar
  26. Simõe AZ, Gonzalez AHM, Zaghete MA, Stojanovic B, Cavalheiro AA, Moeckli P, Setter N, Varela JA (2002) Influence of oxygen flow on crystallization and morphology of LiNbO3 thin films. Ferroelectrics 271:33–38Google Scholar
  27. Stojanović BD, Paiva-Santos CO, Cilense M, Jovalekic C, Lazarević ZŽ (2007) Structure study of Bi4Ti3O12 produced via mechanochemically assisted synthesis. Mater Res Bull 43:1743–1753. doi: 10.1016/j.materresbull.2007.07.007 CrossRefGoogle Scholar
  28. Subbarao EC (1961) Ferroelectricity in Bi4Ti3O12 and its solid solutions. Phys Rev 122:804–807. doi: 10.1103/PhysRev.122.804 CrossRefADSGoogle Scholar
  29. Yang QB, Li YX, Yin QR, Wang PL, Cheng YB (2003) Bi4Ti3O12 nanoparticles prepared by hydrothermal synthesis. J Eur Ceram Soc 23:161–166. doi: 10.1016/S0955-2219(02)00087-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jungang Hou
    • 1
    • 2
  • R. V. Kumar
    • 1
  • Yuanfang Qu
    • 2
  • Dalibor Krsmanovic
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Key Laboratory for Advanced Ceramic and Machining Technology of Ministry of EducationTianjin UniversityTianjinChina

Personalised recommendations