Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 347–356 | Cite as

Patterning and photoluminescence of CdS nanocrystallites on silk fibroin fiber

  • Jie Han
  • Huilan Su
  • Qun Dong
  • Di Zhang
  • Xiaoxiao Ma
  • Chunfu Zhang
Research Paper


CdS nanocrystallites could be formed and assembled into nanoparticle strings and hexagons on natural silk fibroin fiber (SFF) through a room-temperature bio-inspired process. Herein, the biomaterial SFF served as reactive substrate, not only provides the in situ formation sites for CdS nanocrystallites, but also directs the arrangement of nanocrystalline CdS simultaneously. The photoluminescence (PL) of the resulting nanocomposites CdS/SFF is investigated extensively. The PL peaks observed from CdS nanoparticle strings are similar to those of separate CdS nanoparticles, corresponding to the band-edge emission of their individual building blocks (QD-CdS). Moreover, CdS nanoparticle hexagons perform a red-shifted and broadened emission peak.


Chalcogenides Nanostructures Chemical synthesis Photoluminescence spectroscopy Bio-inspired Quantum dots 



Financial supports from the national Science Foundations of China (no. 50671065, no. 30870682) and the Major Fundamental Research Project of Shanghai Science and Technology Committee (no. 07DJ14001, no. 08ZR1411100) are gratefully acknowledged. The authors also thank SJTU Instrument Analysis Center for the measurements.

Supplementary material

11051_2009_9622_MOESM1_ESM.pdf (369 kb)
Supplementary material 1 (PDF 370 kb)


  1. Arachchige IU, Brock SL (2006) Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J Am Chem Soc 128:7964–7971. doi: 10.1021/ja061561e CrossRefPubMedGoogle Scholar
  2. Ayutsede J, Gandhi M, Sukigara S, Ye HH, Hsu CM, Gogotsi Y, Ko F (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214. doi: 10.1021/bm0505888 CrossRefPubMedGoogle Scholar
  3. Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu Rev Phys Chem 41:477–496ADSGoogle Scholar
  4. Berman A, Charych D (1999) Uniaxial alignment of cadmium sulfide on polymerized films: electron microscopy and diffraction study. Adv Mater 11:296–300. doi: 10.1002/(SICI)1521-4095(199903)11:4<296::AID-ADMA296>3.0.CO;2-F CrossRefGoogle Scholar
  5. Berman A, Belman N, Golan Y (2003) Controlled deposition of oriented PbS nanocrystals on ultrathin polydiacetylene templates at the air-solution interface. Langmuir 19:10962–10966. doi: 10.1021/la035419s CrossRefGoogle Scholar
  6. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409. doi: 10.1063/1.447218 CrossRefADSGoogle Scholar
  7. Cavallini M, Facchini M, Albonetti C, Biscarini F, Innocenti M, Loglio F, Salvietti E, Pezzatini G, Foresti ML (2007) Two-dimensional self-organization of CdS ultra thin films by confined electrochemical atomic layer epitaxy growth. J Phys Chem C 111:1061–1064. doi: 10.1021/jp0668908 CrossRefGoogle Scholar
  8. Chen YF, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138. doi: 10.1021/ac0258251 CrossRefPubMedGoogle Scholar
  9. Chen JS, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416. doi: 10.1016/S0142-9612(02)00353-8 CrossRefPubMedGoogle Scholar
  10. Döllefeld H, Weller H, Eychmüller A (2002) Semiconductor nanocrystal assemblies: experimental pitfalls and a simple model of particle-particle interaction. J Phys Chem B 106:5604–5608. doi: 10.1021/jp013234t CrossRefGoogle Scholar
  11. Dong Q, Su HL, Zhang D (2005) In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J Phys Chem B 109:17429–17434. doi: 10.1021/jp052826z CrossRefPubMedGoogle Scholar
  12. Du H, Xu GQ, Chin WS (2002) Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites. Chem Mater 14:4473–4479. doi: 10.1021/cm010622z CrossRefGoogle Scholar
  13. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. doi: 10.1021/cr00098a010 CrossRefGoogle Scholar
  14. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol 21:41–57CrossRefGoogle Scholar
  15. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061. doi: 10.1038/nature01809 Google Scholar
  16. Kagan CR, Murray CB, Bawendi MG (1996) Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54:8633–8643. doi: 10.1103/PhysRevB.54.8633 CrossRefADSGoogle Scholar
  17. Kim UJ, Park JY, Li CM, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792. doi: 10.1021/bm0345460 CrossRefPubMedGoogle Scholar
  18. Li CS, Tang YP, Yao KF, Zhou F, Ma Q, Lin H, Tao MS, Liang J (2006) Decoration of multiwall nanotubes with cadmium sulfide nanoparticles. Carbon 44:2021–2026. doi: 10.1016/j.carbon.2006.01.033 CrossRefGoogle Scholar
  19. Lin Y, Zhang J, Sargent EH, Kumacheva E (2002) Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal. Appl Phys Lett 81:3134–3136. doi: 10.1063/1.1515881 CrossRefADSGoogle Scholar
  20. Liu B, Zeng HC (2005) Semiconductor rings fabricated by self-assembly of nanocrystals. J Am Chem Soc 127:18262–18268. doi: 10.1021/ja055734w CrossRefPubMedGoogle Scholar
  21. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270:1335–1338. doi: 10.1126/science.270.5240.1335 CrossRefADSGoogle Scholar
  22. Murray CB, Sun SH, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45:47–56CrossRefGoogle Scholar
  23. Nag BR (2000) Physics of quantum well devices. Kluwer Academic Publishers, Dordrecht, pp 105Google Scholar
  24. Niemeyer CM (2003) Functional hybrid devices of proteins and inorganic nanoparticles. Angew Chem Int Ed 42:5796–5800. doi: 10.1002/anie.200301703 CrossRefGoogle Scholar
  25. Sapra S, Nanda J, Sarma DD, Abed el-al F, Hodes G (2001) Blue emission from cysteine ester passivated cadmium sulfide nanoclusters. Chem Commun (Camb) 2188–2189. doi: 10.1039/b106420g
  26. Sone ED, Stupp SI (2004) Semiconductor-encapsulated peptide-amphiphile nanofibers. J Am Chem Soc 126:12756–12757. doi: 10.1021/ja0499344 CrossRefPubMedGoogle Scholar
  27. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673. doi: 10.1021/j100082a044 CrossRefGoogle Scholar
  28. Wang CW, Moffitt MG (2004) Surface-tunable photoluminescence from block copolymer-stabilized cadmium sulfide quantum dots. Langmuir 20:11784–11796. doi: 10.1021/la048390g CrossRefPubMedGoogle Scholar
  29. Wang CW, Moffitt MG (2005) Nonlithographic hierarchical patterning of semiconducting nanoparticles via polymer/polymer phase separation. Chem Mater 17:3871–3878. doi: 10.1021/cm0506252 CrossRefGoogle Scholar
  30. Xue PC, Lu R, Huang Y, Jin M, Tan CH, Bao CY, Wang ZM, Zhao YY (2004) Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir 20:6470–6475. doi: 10.1021/la0493520 CrossRefPubMedGoogle Scholar
  31. Zhang YH, Chen YM, Niu HJ, Gao MY (2006) Formation of CdS nanoparticle necklaces with functionalized dendronized polymers. Small 2:1314–1319. doi: 10.1002/smll.200600067 CrossRefPubMedGoogle Scholar
  32. Zhou Y, Ji QM, Masuda M, Kamiya S, Shimizu T (2006) Helical arrays of CdS nanoparticles tracing on a functionalized chiral template of glycolipid nanotubes. Chem Mater 18:403–406. doi: 10.1021/cm051928z CrossRefGoogle Scholar
  33. Zimnitsky D, Jiang CY, Xu J, Lin ZQ, Tsukruk VV (2007) Substrate- and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film. Langmuir 23:4509–4515. doi: 10.1021/la0636917 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix CompositesShanghai Jiaotong UniversityShanghaiChina
  2. 2.Med-X Research InstituteShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations