Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 227–235 | Cite as

Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

  • Thao Thi-Hien Pham
  • Sang Jun Sim
Research Paper


An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles–human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.


Gold-coated magnetic nanoparticles Electrochemical impedance spectroscopy Cyclic voltammetry Immunological interaction Nanomedicine 



This work was supported by the Korea Science and Engineering Foundation (KOSEF) National Research Laboratory (NRL) Program grant funded by the Korea government (MEST) (grant no. R0A-2008-000-20078-0) of the Republic of Korea.


  1. Bouafsoun A, Helali S, Mebarek S, Zeiller C, Prigent AF, Othmane A, Kerkeni A, Jaffrezic-Renault N, Ponsonnet L (2007) Electrical probing of endothelial cell behaviour on a fibronectin/polystyrene/thiol/gold electrode by Faradaic electrochemical impedance spectroscopy (EIS). Bioelectrochemistry 70:401–407. doi: 10.1016/j.bioelechem.2006.05.012 CrossRefPubMedGoogle Scholar
  2. Briand E, Salmain M, Compere C, Pradier CM (2006) Immobilization of protein A on SAMs for the elaboration of immunosensors. Colloid Surf B 53:215–224. doi: 10.1016/j.colsurfb.2006.09.010 CrossRefGoogle Scholar
  3. Cao C, Sim SJ (2007) Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles: a femto molar level measurement of anti-glutamic acid decarboxylase antibody. Biosens Bioelectron 22:1874–1880. doi: 10.1016/j.bios.2006.07.021 CrossRefPubMedGoogle Scholar
  4. Chen J, Tang J, Yan F, Ju H (2006) A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 27:2313–2321. doi: 10.1016/j.biomaterials.2005.11.004 CrossRefPubMedGoogle Scholar
  5. Huang H, Liu Z, Yang X (2006) Application of electrochemical impedance spectroscopy for monitoring allergen-antibody reactions using gold nanoparticle-based biomolecular immobilization method. Anal Biochem 356:208–214. doi: 10.1016/j.ab.2006.05.021 CrossRefPubMedGoogle Scholar
  6. Jeong J, Ha TH, Chung BH (2006) Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Anal Chim Acta 569:203–209. doi: 10.1016/j.aca.2006.03.102 CrossRefGoogle Scholar
  7. Jie M, Ming CY, Jing D, Cheng LS, Na LH, Jun F, Xiang CY (1999) An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody. Electrochem Commun 1:425–428. doi: 10.1016/S1388-2481(99)00071-5 CrossRefGoogle Scholar
  8. Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3. Chem Mater 8:2209–2211. doi: 10.1021/cm960157j CrossRefGoogle Scholar
  9. Merkoci A (2007) Electrochemical biosensing with nanoparticles. FEBS J 274:310–316. doi: 10.1111/j.1742-4658.2006.05603.x CrossRefPubMedGoogle Scholar
  10. Navratilova I, Skaladal P (2004) The immunosensors for measurement of 2,4-dichlorophenoxyacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry 62:11–18. doi: 10.1016/j.bioelechem.2003.10.004 CrossRefPubMedGoogle Scholar
  11. Pham TT, Cao C, Sim SJ (2008) Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J Magn Magn Mater 320:2049–2055. doi: 10.1016/j.jmmm.2008.03.015 CrossRefADSGoogle Scholar
  12. Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuators B 123:1195–1205. doi: 10.1016/j.snb.2006.11.016 CrossRefGoogle Scholar
  13. Schwartz MP, Alvarez SD, Sailor MJ (2007) Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: binding of protein A to immunoglobulins derived from different species. Anal Chem 79:327–334. doi: 10.1021/ac061476p CrossRefPubMedGoogle Scholar
  14. Tang D, Yaun R, Chai Y, Fu Y, Dai J, Liu Y, Zhong X (2005) New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2′-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations. Biosens Bioelectron 21:539–546. doi: 10.1016/j.bios.2004.11.024 CrossRefPubMedGoogle Scholar
  15. Tang D, Yuan R, Chai Y (2006a) Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine and gold nanoparticles-modified carbon paste interface. Anal Chim Acta 564:158–165. doi: 10.1016/j.aca.2006.01.094 CrossRefGoogle Scholar
  16. Tang D, Yuan R, Chai Y (2006b) Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. J Phys Chem B 110:11640–11646. doi: 10.1021/jp060950s CrossRefPubMedGoogle Scholar
  17. Touhami A, Jericho MH, Beveridge TJ (2007) Molecular recognition forces between immunoglobulin G and a surface protein adhesin on living Staphylococcus aureus. Langmuir 23:2755–2760. doi: 10.1021/la0628930 CrossRefPubMedGoogle Scholar
  18. Wu L, Yan F, Ju HJ (2007) An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber. J Immunol Methods 322:12–19. doi: 10.1016/j.jim.2007.01.026 CrossRefPubMedGoogle Scholar
  19. Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN (2007) A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosens Bioelectron 22:2121–2126. doi: 10.1016/j.bios.2006.09.030 CrossRefPubMedGoogle Scholar
  20. Zhou YM, Hu SQ, Shen GL, Yu RQ (2003) An amperometric immunosensor based on an electrochemically pretreated carbon-paraffin electrode for complement III (C3) assay. Biosens Bioelectron 18:473–481. doi: 10.1016/S0956-5663(02)00146-X CrossRefPubMedGoogle Scholar
  21. Zhou Y, Yuan R, Chai Y, Zhang Y, Li X, Wang N, Zhu Q (2006) Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nafion modified electrode surface for α-1-fetoprotein determinations. Sens Actuators B 114:631–639. doi: 10.1016/j.snb.2005.04.051 CrossRefGoogle Scholar
  22. Zhu X, Han K, Li G (2006) Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization. Anal Chem 78:2447–2449. doi: 10.1021/ac051962x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Nano-optics & Biomolecular Engineering National Laboratory, Department of Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations