Skip to main content
Log in

Rheological behaviour of ethylene glycol-titanate nanotube nanofluids

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Experimental work has been performed on the rheological behaviour of ethylene glycol based nanofluids containing titanate nanotubes over 20–60 °C and a particle mass concentration of 0–8%. It is found that the nanofluids show shear-thinning behaviour particularly at particle concentrations in excess of ~2%. Temperature imposes a very strong effect on the rheological behaviour of the nanofluids with higher temperatures giving stronger shear thinning. For a given particle concentration, there exists a certain shear rate below which the viscosity increases with increasing temperature, whereas the reverse occurs above such a shear rate. The normalised high-shear viscosity with respect to the base liquid viscosity, however, is independent of temperature. Further analyses suggest that the temperature effects are due to the shear-dependence of the relative contributions to the viscosity of the Brownian diffusion and convection. The analyses also suggest that a combination of particle aggregation and particle shape effects is the mechanism for the observed high-shear rheological behaviour, which is also supported by the thermal conductivity measurements and analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abdulagatov MI, Azizov ND (2006) Experimental study of the effect of temperature, pressure and concentration on the viscosity of aqueous NaBr solutions. J Solut Chem 35(5):705–738. doi:10.1007/s10953-006-9020-6

    Article  CAS  Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier Science B.V., Netherlands

    MATH  Google Scholar 

  • Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14(22):3370–3377

    Article  CAS  Google Scholar 

  • Bird RB, Steward WE and Lightfoot EN (2002) Transport Phenomena, 2nd edn. Wiley, New York

  • Brenner H, Condiff DW (1974) Transport mechanics in systems of orientable particles, Part IV. Convective Transprort. J Colloid Inter Sci 47(1):199–264

    Article  CAS  Google Scholar 

  • Chen HS, Ding YL, He YR, Tan CQ (2007a) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 444(4–6):333–337

    Article  ADS  CAS  Google Scholar 

  • Chen HS, Ding YL, Tan CQ (2007b) Rheological behaviour of nanofluids. New J Phys 9(367):1–25

    ADS  Google Scholar 

  • Chen HS, Yang W, He YR, Ding YL, Zhang LL, Tan CQ, Lapkin AA, Bavykin DV (2008) Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes under the laminar flow conditions. Powder Technol 183:63–72

    Article  CAS  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles In: Siginer DA, Wang HP (eds) Developments applications of non-newtonian flows, FED-vol 231/MD-vol 66. ASME, New York, pp 99–105

  • Chow TS (1993) Viscosities of concentrated dispersions. Phys Rev E 48:1977–1983

    Article  ADS  CAS  Google Scholar 

  • Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transfer 46:851–862

    Article  CAS  Google Scholar 

  • Ding YL, Alias H, Wen DS, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1–2):240–250

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1978a) Dynamics of rod-like macromolecules in concentrated solution, Part 1. J Colloid Sci 74:560–570

    CAS  Google Scholar 

  • Doi M, Edwards SF (1978b) Dynamics of rod-like macromolecules in concentrated solution, Part 2. J Colloid Sci 74:918–932

    CAS  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  ADS  CAS  Google Scholar 

  • Egres RG, Wagner NJ (2005) The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol 49:719–746

    Article  ADS  CAS  Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Molekul-dimension (a new determination of the molecular dimensions). Annal der Phys 19(2):289–306

    Article  ADS  CAS  Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekul-dimension (correction of my work: a new determination of the molecular dimensions). Ann der Phys 34(3):591–592

    Article  ADS  CAS  Google Scholar 

  • Goodwin JW, Hughes RW (2000) Rheology for chemists—an introduction. The Royal Society of Chemistry, UK

    Google Scholar 

  • Haas W, Zrinyi M, Kilian HG, Heise B (1993) Structural analysis of anisometric colloidal iron(III)-hydroxide particles and particle-aggregates incorporated in poly(vinyl-acetate) networks. Colloid Polym Sci 271:1024–1034

    Article  CAS  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal Conductivity of heterogeneous two-component systems. I&EC Fundam 125(3):187–191

    Article  Google Scholar 

  • He YR, Jin Y, Chen HS, Ding YL, Cang DQ (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50(11–12):2272–2281

    Article  MATH  CAS  Google Scholar 

  • Hobbie EK, Fry DJ (2006) Nonequilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett 97:036101

    Article  PubMed  ADS  CAS  Google Scholar 

  • Keblinski P, Eastman JA and Cahill DG (2005) Nanofluids for thermal transport, Mater Today, June Issue, 36–44

  • Krishnamurthy S, Lhattacharya P, Phelan PE, Prasher RS (2006) Enhanced mass transport of in nanofluids. Nano Lett 6(3):419–423

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 17(2):35–40

    MathSciNet  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Larson RG (2005) The rheology of dilute solutions of flexible polymers: progress and problems. J Rheol 49:1–70

    Article  ADS  CAS  Google Scholar 

  • Lee D, Kim J, Kim B (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328

    Article  PubMed  CAS  Google Scholar 

  • Lin JM, Lin TL, Jeng U, Zhong Y, Yeh C, Chen T (2007) Fractal aggregates of fractal aggregates of the Pt nanoparticles synthesized by the polyol process and poly(N-vinyl-2-pyrrolidone) reduction. J Appl Crystallogr 40:s540–s543

    Article  CAS  Google Scholar 

  • Micali N, Villari V, Castriciano MA, Romeo A, Scolaro LM (2006) From fractal to nanorod porphyrin J-aggregates. Concentration-induced tuning of the aggregate size. J Phys Chem B 110:8289–8295

    Article  PubMed  CAS  Google Scholar 

  • Mohraz A, Moler DB, Ziff RM, Solomon MJ (2004) Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys Rev Lett 92:155503

    Article  PubMed  ADS  CAS  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373

    Article  CAS  Google Scholar 

  • Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    Article  ADS  CAS  Google Scholar 

  • Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375(5–6):666–669

    Article  ADS  CAS  Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:150–170

    Article  ADS  Google Scholar 

  • Prasher R, Song D, Wang J (2006a) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108-1-3

    ADS  Google Scholar 

  • Prasher R, Phelan PE, Bhattacharya P (2006b) Effect of aggregation kinetics on thermal conductivity of nanoscale colloidal solutions (nanofluids). Nano Lett 6(7):1529–1534

    Article  PubMed  ADS  CAS  Google Scholar 

  • Russel WB, Saville DA, Scholwater WR (1991) Colloidal dispersions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Waite TD, Cleaver JK, Beattie JK (2001) Aggregation kinetics and fractal structure of gamma-alumina assemblages. J Colloid Interface Sci 241:333–339

    Article  CAS  Google Scholar 

  • Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  Google Scholar 

  • Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermphys Heat Transf 13:474

    Article  CAS  Google Scholar 

  • Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672

    Article  MATH  CAS  Google Scholar 

  • Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423(6936):156–159

    Article  PubMed  ADS  CAS  Google Scholar 

  • Wen DS, Ding YL (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26:855–864

    Article  CAS  Google Scholar 

  • Xuan YM, Li Q, Hu J,WF (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043

    Article  CAS  Google Scholar 

  • Yang Y, Zhong ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersion (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was partially supported by UK EPSRC under grants EP/E00041X/1 and EP/F015380/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Ding, Y., Lapkin, A. et al. Rheological behaviour of ethylene glycol-titanate nanotube nanofluids. J Nanopart Res 11, 1513–1520 (2009). https://doi.org/10.1007/s11051-009-9599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9599-9

Keywords

Navigation