Surface-functionalization of spherical silver nanoparticles with macrocyclic polyammonium cations and their potential for sensing phosphates

Research Paper


The synthesis of aqueous dispersion of spherical, underivatized silver nanoparticles (Ag-NPs) stabilized by macrocyclic polyammonium chlorides (MCPAC), [28]ane-(NH2 +)6O2·6Cl (28-MCPAC) and [32]ane-(NH2 +)8·8Cl (32-MCPAC), which are evidently anion receptors, is reported. As-synthesized Ag-NPs are characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The 28/32-MCPAC-stabilized Ag-NPs show the surface plasmon band around 400 nm. The TEM-images show that the particles are spherical and well-dispersed. By tuning the 28/32-MCPAC:Ag-OAc (silver acetate) ratio, nanoparticles with different core diameters ranging from 13 to 8 nm for 28-MCPAC and from 10 to 6 nm for 32-MCPAC can be obtained. The advantage of using MCPAC as stabilizers is that they make the particles functionalized for sensing anions. Thus, the potential of the as-synthesized Ag-NPs for sensing phosphates: H2PO4 (monobasic phosphate, MBP), HPO4 2− (dibasic phosphate, DBP) and PO4 3− (tribasic phosphate, TBP) is investigated spectroscopically. Interaction of phosphate ions with macrocyclic polyammonium cations makes the Ag-NPs bare, leading agglomeration. The phosphate-assisted agglomeration of 32-MCPAC-Ag-NPs follow the order TBP > DBP ≫ MBP.


Silver nanoparticles Functionalization Macrocyclic polyammonium chlorides Water Dispersion Phosphates Colloids 



The authors would like to thank the National Science Council of Taiwan for their generous financial support of this research.

Supplementary material

11051_2008_9493_MOESM1_ESM.pdf (56 kb)
MOESM1 [Supporting material includes the photographs of 32-MCPAC-Ag-NPs in the presence of phosphate ions over time.] (PDF 55 kb)] (PDF 55 kb)


  1. Bazzicalupi C, Bencini A, Bianchi A, Cecchi M, Escuder B, Fusi V et al (1999) Thermodynamics of phosphates and pyrophosphates anions binding by polyammonium receptors. J Am Chem Soc 121(29):6807–6815. doi: 10.1021/ja983947y CrossRefGoogle Scholar
  2. Beer PD, Gale PA (2001) Anion recognition and sensing: a state of the art and future perspectives. Angew Chem Int Ed 40:486–516. doi:10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-PCrossRefGoogle Scholar
  3. Bianchi A, Bowman-James K, Garcia-España E (1997) Supramolecular chemistry. Wiley-VCH, New YorkGoogle Scholar
  4. Braun E, Erichen Y, Siven U, Yoseph GB (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778. doi: 10.1038/35826 PubMedCrossRefADSGoogle Scholar
  5. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802. doi: 10.1039/c39940000801
  6. Chen S, Kimura K (1999) Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 15(4):1075–1082. doi: 10.1021/la9812828 CrossRefGoogle Scholar
  7. Chen W, Dong S, Wang E (2003) Synthesis and self-assembly of cetyltrimethyl-ammonium bromide-capped gold nanoparticles. Langmuir 19(22):9434–9439. doi: 10.1021/la034818k CrossRefGoogle Scholar
  8. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH et al (2005) Interaction of silver nanoparticles with HIV-I. J Nanobiotechnol 3(6):1–10. doi: 10.1186/1477-3155-3-6 Google Scholar
  9. Fink J, Kiely CJ, Bethell D, Schiffrin DJ (1998) Self-organization of nanosized gold particles. Chem Mater 10(3):922–926. doi: 10.1021/cm970702w CrossRefGoogle Scholar
  10. Fitzmaurice D, Rao SN, Preece JA, Stoddart JF, Wenger S, Zaccheroni N (1999) Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal. Angew Chem Int Ed Engl 38(8):1147–1150. doi:10.1002/(SICI)1521-3773(19990419)38:8<1147::AID-ANIE1147>3.0.CO;2-ACrossRefGoogle Scholar
  11. Garcia-España E, Diaz P, Llinares JM, Bianchi A (2006) Anion coordination chemistry in aqueous solution of polyammonium receptors. Coord Chem Rev 250:2952–2986. doi: 10.1016/j.ccr.2006.05.018 CrossRefGoogle Scholar
  12. Hailstone RK (1995) Computer simulation studies of silver cluster formation on AgBr microcrystals. J Phys Chem 99(13):4414–4428. doi: 10.1021/j100013a009 CrossRefGoogle Scholar
  13. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103(44):9533–9539. doi: 10.1021/jp9925334 CrossRefGoogle Scholar
  14. Hussain I, Brust M, Papworth AJ, Cooper AI (2003) Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19(11):4831–4835. doi: 10.1021/la020710d CrossRefGoogle Scholar
  15. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63. doi: 10.1002/bit.20368 PubMedCrossRefGoogle Scholar
  16. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106(32):7729–7744. doi: 10.1021/jp0209289 CrossRefGoogle Scholar
  17. Kang SY, Kim K (1998) Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir 14(1):226–230. doi: 10.1021/la970696i CrossRefGoogle Scholar
  18. Kelly KL, Coronado E, Zhao LI, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. doi: 10.1021/jp026731y CrossRefGoogle Scholar
  19. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi: 10.1021/j100214a025 CrossRefGoogle Scholar
  20. Li X, Jhang J, Xu W, Jia H, Wang X, Yang B et al (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity. Langmuir 19(10):4285–4290. doi: 10.1021/la0341815 CrossRefGoogle Scholar
  21. Lin SY, Liu SW, Lin CM, Chen CH (2002) Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal Chem 74(2):330–335. doi: 10.1021/ac0156316 PubMedCrossRefMathSciNetGoogle Scholar
  22. Lin SY, Chen CH, Lin MC, Hsu HF (2005) A cooperative effect of biofunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media. Anal Chem 77(15):4821–4828. doi: 10.1021/ac050443r PubMedCrossRefGoogle Scholar
  23. Liu CY, Chen WH (1998) Electrophoretic separation of inorganic anions with an anion complex one-modified capillary column. J Chromatogr A 815:251–263. doi: 10.1016/S0021-9673(98)00481-6 CrossRefGoogle Scholar
  24. Liu J, Alvarez J, Kaifer AE (2000) Metal nanoparticles with a knack for molecular recognition. Adv Mater 12(18):1381–1383 and references cited therein. doi: 10.1002/1521-4095(200009)12:18<1381::AID-ADMA1381>3.0.CO;2-U Google Scholar
  25. Liu C, Yang X, Yuana H, Zhou Z, Xiao D (2007a) Preparation of silver nanoparticles and its application to the determination of ct-DNA. Sensors 7:708–718CrossRefGoogle Scholar
  26. Liu CY, Chen TH, Misra TK (2007b) A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates. J Chromatogr A 1154:407–415. doi: 10.1016/j.chroma.2007.03.083 PubMedCrossRefGoogle Scholar
  27. Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5(1):5–9. doi: 10.1021/nl048965u PubMedCrossRefADSGoogle Scholar
  28. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13(19):1501–1505. doi:10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-ZCrossRefGoogle Scholar
  29. Mayer ABR, Mark JE (2002) Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticles. Polymer (Guildf) 41(4):1627–1631. doi: 10.1016/S0032-3861(99)00368-7 CrossRefGoogle Scholar
  30. Misra TK, Liu CY (2008) Synthesis of 28-membered macrocyclic polyammonium cations functionalized gold nanoparticles and their potential for sensing nucleotides. J Colloid Interface Sci (in press). doi: 10.1016/j/jcis.2008.06.056
  31. Misra TK, Chen TS, Wong KT, Liu CY (2005) A convenient modified short route for the preparation of [32]ane-N8 hydrochloride. J Chin Chem Soc 52(4):793–797Google Scholar
  32. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi: 10.1088/0957-4484/16/10/059 CrossRefADSGoogle Scholar
  33. Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID et al (2001) Submicrometer metallic barcodes. Science 294:137–141. doi: 10.1126/science.294.5540.137 PubMedCrossRefADSGoogle Scholar
  34. Pal A, Pal T (1999) Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis. J Raman Spectrosc 30(3):199–204. doi:10.1002/(SICI)1097-4555(199903)30:3<199::AID-JRS359>3.0.CO;2-BCrossRefADSGoogle Scholar
  35. Pasquato L, Pengo P, Scrimin P (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14:3481–3487. doi: 10.1039/b410476e CrossRefGoogle Scholar
  36. Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97(49):12974–12983. doi: 10.1021/j100151a054 CrossRefGoogle Scholar
  37. Ryan D, Rao SN, Rensmo H, Fitzmaurice D, Preece JA, Wenger S et al (2000) Heterosupramolecular chemistry: recognition initiated and inhibited silver nanocrystal aggregation by pseudorotaxane assembly. J Am Chem Soc 122(26):6252–6257. doi: 10.1021/ja0002621 CrossRefGoogle Scholar
  38. Saenger W (1998) Principles of nucleic acid structure. Springer, New YorkGoogle Scholar
  39. Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR (1997) Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. J Phys Chem B 101(48):9876–9880. doi: 10.1021/jp971544z CrossRefGoogle Scholar
  40. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97(3):996–1001. doi: 10.1073/pnas.97.3.996 PubMedCrossRefADSGoogle Scholar
  41. Shiraishi Y, Toshima N (1999) Colloidal silver catalysts for oxidation of ethylene. J Mol Catal Chem 141:187–192. doi: 10.1016/S1381-1169(98)00262-3 CrossRefGoogle Scholar
  42. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182. doi: 10.1016/j.jcis.2004.02.012 PubMedCrossRefGoogle Scholar
  43. Thomson NR (1973) Comprehensive inorganic chemistry. Pergamon Press, New YorkGoogle Scholar
  44. Turkevich J, Garton G, Stevenson PC (1954) The color of colloidal gold. J Colloid Sci 9:26–35. doi: 10.1016/0095-8522(54)90070-7 CrossRefGoogle Scholar
  45. Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver nanoparticles by interphase reduction. Colloids Surf A Physicochem Eng Asp 152(3):375–379. doi: 10.1016/S0927-7757(98)00861-9 CrossRefGoogle Scholar
  46. Xu J, Han X, Liu H, Hu Y (2006) Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids Surf A Physicochem Eng Asp 273:179–183. doi: 10.1016/j.colsurfa.2005.08.019 CrossRefGoogle Scholar
  47. Zhang J, Malicka J, Gryczynski I, Lakowicz JR (2004) Oligonucleotide-displaced organic monolayer-protected silver nanoparticles and enhanced luminescence of their salted aggregates. Anal Biochem 330(1):81–86. doi: 10.1016/j.ab.2004.04.001 PubMedCrossRefGoogle Scholar
  48. Zheng J, Stevenson MS, Hikida RS, Van Patten PG (2002) Influence of pH on dendrimer-protected nanoparticles. J Phys Chem B 106(6):1252–1255. doi: 10.1021/jp013108p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations