Advertisement

Journal of Nanoparticle Research

, Volume 10, Issue 8, pp 1329–1336 | Cite as

High accuracy photopyroelectric investigation of dynamic thermal parameters of Fe3O4 and CoFe2O4 magnetic nanofluids

  • D. Dadarlat
  • C. Neamtu
  • M. Streza
  • R. Turcu
  • I. Craciunescu
  • D. Bica
  • L. Vekas
Technology and Applications

Abstract

The suitability of the photopyroelectric (PPE) calorimetry in measuring the thermal parameters of nanofluids was demonstrated. The main advantages of the method (concerning nanofluids) as compared to classical calorimetric techniques are: high sensitivity and small amount of sample required. The thermal diffusivity and effusivity of some nanofluids based on Fe3O4 and CoFe2O4 type of nanoparticles (mean diameter 6.5 nm) were investigated by using two PPE detection configurations (back and front). In both cases, the information is contained in the phase of the PPE signal. Due to the high accuracy of the results (within ±0.5%) thermal diffusivity was found to be particularly sensitive to changes in relevant parameters of the nanofluid as carrier liquid, type and concentration of nanoparticles.

Keywords

Magnetic nanofluids Thermal parameters Photopyroelctric technique Photothermal calorimetry Nanoparticles 

Nomenclature

k

Thermal conductivity

R

Reflection coefficient of the thermal wave

e

Thermal effusivity

f

Chopping frequency

a

Reciprocal of the thermal diffusion length

C

Volume specific heat

Greek symbols

α

Thermal diffusivity

Θ

Phase of the photopyroelectric signal

μ

Thermal diffusion length

Subscripts

m

Material

p

Pyroelectric sensor

w

Window

abs

Absolute value

References

  1. Balderas-Lopez JA, Mandelis A, Garcia JA (2000) Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum 71:2933–2937CrossRefGoogle Scholar
  2. Bica D, Vekas L, Rasa M (2002) Preparation and magnetic properties of concentrated magnetic fluids on alcohol and water carrier liquids. J Magn Magn Mater 252:10–12CrossRefGoogle Scholar
  3. Chirtoc M, Mihailescu G (1989) Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Phys Rev B 40:9606–9617CrossRefGoogle Scholar
  4. Chirtoc M, Dadarlat D, Bicanic D, Antoniow JS, Egee M (1997) Applications of photothermal calorimetry in agriculture, medicine and environmental sciences. In: Mandelis A, Hess P (eds) Progress in photothermal and photoacoustic science and technology. SPIE Optical Engineering Press, Belingham, USA, pp 185–257Google Scholar
  5. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspension. Appl Phys Lett 79:2252–2254CrossRefGoogle Scholar
  6. Dadarlat D, Neamtu C (2006) Detection of molecular associations in liquids by photopyroelectric measurements of thermal effusivity. Meas Sci Technol 17:3250–3254CrossRefGoogle Scholar
  7. Dadarlat D, Chirtoc M, Neamtu C, Candea R, Bicanic D (1990) Inverse photopyroelectric detection method. Phys Stat Sol (a) 121:K231–K234CrossRefGoogle Scholar
  8. Dadarlat D, Bicanic D, Visser H, Mercuri F, Frandas A (1995) Photopyroelectric method for determination of thermophysical parameters and detection of phase transitions in fatty acids and triglycerides. Part I: principles, theory and instrumentational concepts. J Am Oil Chem Soc 74:273–281CrossRefGoogle Scholar
  9. Delenclos S, Chirtoc M, Hadj Sahraoui A, Kolinsky C, Buisine JM (2002) Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method. Rev Sci Instrum 73:2773–2780CrossRefGoogle Scholar
  10. Delenclos S, Dadarlat D, Houriez N, Longuermart S, Kolinsky C, Hadj Sahraoui A (2007) On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method. Rev Sci Instrum 78:024902CrossRefGoogle Scholar
  11. Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRefGoogle Scholar
  12. Kebilinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8:36–44CrossRefGoogle Scholar
  13. Longuermart S, Quiroz AG, Dadarlat D, Hadj Sahraoui A, Kolinsky C, Buisine JM, Correa da Silva E, Mansanares AM, Filip X, Neamtu C (2002) An application of the front photopyroelectric technique for measuring the thermal effusivity of some foods. Instr Sci Technol 30:157–165CrossRefGoogle Scholar
  14. Mandelis A, Zver M (1985) Theory of the photopyroelectric effect in solids. J Appl Phys 57:4421–4430CrossRefGoogle Scholar
  15. Marinelli M, Zammit U, Mercuri F, Pizzoferrato R (1992) High-resolution simultaneous photothermal measurements of thermal parameters at a phase transition with the photopyroelectric technique. J Appl Phys 72:1096–1100CrossRefGoogle Scholar
  16. Marinelli M, Mercuri F, Zammit U, Pizzoferrato R, Scudieri F, Dadarlat D (1994) Photopyroelectric study of specific heat, thermal conductivity and thermal diffusivity of Cr2O3 at the Neel transition. Phys Rev B 49:9523–9532Google Scholar
  17. Neamtu C, Dadarlat D, Chirtoc M, Hadj Sahraoui A, Longuemart S, Bicanic D (2006) Evidencing molecular associations in binary liquid mixtures via photothermal measurements of thermophysical parameters. Instr Sci Technol 34:225–232CrossRefGoogle Scholar
  18. Sahraoui AH, Longuermart S, Dadarlat D, Delenclos S, Kolinsky C, Buisine JM (2003) Analysis of the photopyroelectric signal for investigating thermal parameters of pyroelectric materials. Rev Sci Instrum 74:618–623CrossRefGoogle Scholar
  19. Shen J, Mandelis A (1995) Thermal-wave resonator cavity. Rev Sci Instrum 66:4999–5005CrossRefGoogle Scholar
  20. Shen J, Mandelis A, Tsai H (1998) Signal generation mechanism, intercavity – gas thermal diffusivity temperature dependence and absolute infrared emissivity measurements in a thermal-wave resonant cavity. Rev Sci Instrum 69:197–203CrossRefGoogle Scholar
  21. Vekas L, Bica D, Marinica O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Rom Rep Phys 58:257–267Google Scholar
  22. Vekas L, Bica D, Avdeev MV (2007) Magnetic nanoparticles and concentrated magnetic nanofluids: synthesis, properties and some applications. China Particuol 5:43–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. Dadarlat
    • 1
  • C. Neamtu
    • 1
  • M. Streza
    • 1
  • R. Turcu
    • 1
  • I. Craciunescu
    • 1
  • D. Bica
    • 2
  • L. Vekas
    • 2
  1. 1.National R&D Institute for Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.Laboratory of Magnetic FluidsRomanian Academy – Timisoara BranchTimisoaraRomania

Personalised recommendations