Advertisement

Journal of Nanoparticle Research

, Volume 10, Supplement 1, pp 77–88 | Cite as

The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes

  • Cher Hon Lau
  • Raoul Cervini
  • Stephen R. Clarke
  • Milena Ginic Markovic
  • Janis G. Matisons
  • Stephen C. Hawkins
  • Chi P. Huynh
  • George P. Simon
Research Paper

Abstract

Carbon nanotubes (CNTs) are of interest in many areas of nanotechnology and used in a number of novel applications. However effective dispersion remains a problem and one solution is to functionalize the nanotubes. Any functionalization that is undertaken must preferably not influence other key properties such as strength and electrical conductivity. In this work, multi-walled CNTs are functionalized for comparison, using a range of oxidative techniques, including thermal treatment, acid reflux, and dry UV-ozonolysis. The effects of these treatments on the multi-walled carbon nanotubes (MWCNTs) and their electrical properties were characterized using a range of surface and compositional techniques. The electrical conductivity of MWCNTs was found to increase with functionalization in all cases, and dry UV-ozonolysis was shown to be the treatment technique which best increased conductivity, whilst at the same time maintaining the structural integrity of the nanotubes, even though the level of modification was less than by the other treatment methods.

Keywords

Nanotube Ozonolysis Conductivity MWCNT 

References

  1. Agrawal S, Raghuveer M, Li H, Ramanath G (2007) Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes. Appl Phys Lett 90:193104–193103CrossRefGoogle Scholar
  2. Balasubramanian K, Burghard B (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRefGoogle Scholar
  3. Banerjee S, Wong SS (2002) Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B 106:12144–12151CrossRefGoogle Scholar
  4. Chopra N, Majumder M, Hinds BJ (2005) Bifunctional carbon nanotubes by sidewall protection. Adv Funct Mater 15:858–864CrossRefGoogle Scholar
  5. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRefGoogle Scholar
  6. Grossiord N, Loos J, Koning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15:2349–2352CrossRefGoogle Scholar
  7. Hamon MA, Jian CH, Hu Y, Chen M, Apparao EI, Rao M, Eklund PC, Haddon PC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840CrossRefGoogle Scholar
  8. Hamwi A, Alvergnat H, Bonnamy S, Béguin F (1997) Fluorination of carbon nanotubes. Carbon 35:723–728CrossRefGoogle Scholar
  9. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859CrossRefGoogle Scholar
  10. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237Google Scholar
  11. Hiura H, Ebbesen TW, Tanigaki K (1995) Opening and purification of carbon nanotubes in high yields. Adv Mater 7:275–276CrossRefGoogle Scholar
  12. Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, Jellen F (2001) Sidewall functionalization of carbon nanotubes. Angew Chem Int Ed 40:4002–4005CrossRefGoogle Scholar
  13. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  14. Lefrant S, Baibarac M, Baltog I, Velula T, Mevellec JY, Chauvet O (2005) Electrochemical and vibrational properties of single-walled carbon nanotubes in hydrochloric acid solutions. Diamond Relat Mater 14:873–880CrossRefGoogle Scholar
  15. Li C, Wang D, Liang T, Wang X, Wu J, Hu X, Liang J (2004) Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors. Powder Technol 142:175–179CrossRefGoogle Scholar
  16. Li W, Bai Y, Zhang Y, Sun M, Cheng R, Xu X, Chen Y, Mo Y (2005) Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth Met 155:509–515CrossRefGoogle Scholar
  17. Lim JK, Yun WS, Yoon M-h, Lee SK, Kim CH, Kim K, Kim SK (2003) Selective thiolation of single-walled carbon nanotubes. Synth Met 139:521–527CrossRefGoogle Scholar
  18. Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251–1272CrossRefGoogle Scholar
  19. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113CrossRefGoogle Scholar
  20. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161CrossRefGoogle Scholar
  21. Piccozi S, Santucci S, Lozzi L, Cantalini C, Baratto C, Sbervegelieri G, Armentano I, Kenny JM, Valentini L, Delley B (2004) Ozone adsorption on carbon nanotubes: ab initio calculations. J Vac Sci Technol A 22:1466–1470Google Scholar
  22. Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B Condens Matter Mater Phys 73:085410Google Scholar
  23. Sham M-L, Kim J-K (2006) Surface functionalities of multi-wall carbon nanotubes after UV/ozone and TETA treatments. Carbon 44:768–777CrossRefGoogle Scholar
  24. Singjai P, Changsarn S, Thongtem S (2007) Electrical resistivity of bulk multi-walled carbon nanotubes synthesized by an infusion chemical vapor deposition method. Mater Sci Eng A 443:42–46CrossRefGoogle Scholar
  25. Th M, van Attekum PM, Wertheim GK (1979) Excitonic effects in core-hole screening. Phys Rev Lett 43:1896–1898CrossRefGoogle Scholar
  26. Wang C, Zhou G, Liu H, Wu J, Qiu Y, Gu BL, Duan W (2006) Chemical functionalization of carbon nanotubes by carboxyl groups on Stone-Wales defects: a density functional theory study. J Phys Chem B 110:10266–10271CrossRefGoogle Scholar
  27. Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718CrossRefGoogle Scholar
  28. Zhang M, Su L, Mao L (2006) Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon 44:276–283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Cher Hon Lau
    • 1
    • 2
  • Raoul Cervini
    • 3
  • Stephen R. Clarke
    • 1
  • Milena Ginic Markovic
    • 1
  • Janis G. Matisons
    • 1
  • Stephen C. Hawkins
    • 4
  • Chi P. Huynh
    • 4
  • George P. Simon
    • 3
  1. 1.School of Chemistry, Physics and Earth SciencesFlinders UniversityAdelaideAustralia
  2. 2.Institute of Materials Research and EngineeringSingaporeSingapore
  3. 3.Department of Materials EngineeringMonash UniversityMelbourneAustralia
  4. 4.CSIRO Textile and Fibre TechnologyClaytonAustralia

Personalised recommendations