Journal of Nanoparticle Research

, Volume 10, Issue 8, pp 1319–1328 | Cite as

Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations

  • Yongjin Feng
  • Boming Yu
  • Kaiming Feng
  • Peng Xu
  • Mingqing Zou
Research Paper


Nanofluids, a class of solid–liquid suspensions, have received an increasing attention and studied intensively because of their anomalously high thermal conductivites at low nanoparticle concentration. Based on the fractal character of nanoparticles in nanofluids, the probability model for nanoparticle’s sizes and the effective thermal conductivity model are derived, in which the effect of the microconvection due to the Brownian motion of nanoparticles in the fluids is taken into account. The proposed model is expressed as a function of the thermal conductivities of the base fluid and the nanoparticles, the volume fraction, fractal dimension for particles, the size of nanoparticles, and the temperature, as well as random number. This model has the characters of both analytical and numerical solutions. The Monte Carlo simulations combined with the fractal geometry theory are performed. The predictions by the present Monte Carlo simulations are shown in good accord with the existing experimental data.


Nanofluids Fractals Thermal conductivity Monte Carlo simulation Nanoparticles Modelling Colloids 



This work was supported by the National Natural Science Foundation of China through grant number 10572052.


  1. Acrivos A, Taylor TD (1962) Heat and mass transfer from single spheres in Stokes flow. Phys Fluids 5:387–394CrossRefGoogle Scholar
  2. Brodkey RS, Kim DS, Sidner W (1991) Fluid to particle heat transfer in a fluidized bed and to single particles. Int J Heat Mass Transf 34:2327–2337CrossRefGoogle Scholar
  3. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows, ASME, New York, FED—vol 231/MD—vol 66, pp 99–105Google Scholar
  4. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRefGoogle Scholar
  5. Eastman JA, Choi SUS, Li S,Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivity of ethyleneglycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRefGoogle Scholar
  6. Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116CrossRefGoogle Scholar
  7. Feng YJ, Yu BM, Zou MQ, Zhang DM (2004) A generalized model for the effective thermal conductivity of porous media based on self-similarity. J Phys D Appl Phys 37:3030–3040CrossRefGoogle Scholar
  8. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. I&EC Fundam 1:187–191CrossRefGoogle Scholar
  9. Havlin S, Ben-Avraham D (1987) Diffusion in disordered media. Adv Phys 36(6):695–798CrossRefGoogle Scholar
  10. Hong KS, Hong TK, Yang HS (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88:031901CrossRefGoogle Scholar
  11. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(2001):4316–4318CrossRefGoogle Scholar
  12. Keblinski P, Phillpot S, Choi S, Eastman J (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863CrossRefGoogle Scholar
  13. Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRefGoogle Scholar
  14. Lee S, Choi S, Li S, Eastman J (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289CrossRefGoogle Scholar
  15. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan) 4:227–233Google Scholar
  16. Maxwell J (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, CambridgeGoogle Scholar
  17. Prasher RS, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901CrossRefGoogle Scholar
  18. Prasher RS, Bhattacharya P, Phelan PE (2006a) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRefGoogle Scholar
  19. Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P (2006b) Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett 89:143119CrossRefGoogle Scholar
  20. Ren Y, Xie HQ, Cai A (2005) Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys 38:3958–3961CrossRefGoogle Scholar
  21. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672CrossRefGoogle Scholar
  22. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572CrossRefGoogle Scholar
  23. Xu J, Yu BM, Zou MQ, Xu P (2006) A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J Phys D Appl Phys 39:4486–4490CrossRefGoogle Scholar
  24. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043CrossRefGoogle Scholar
  25. Xue QZ (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317CrossRefGoogle Scholar
  26. Yu BM, Zou MQ, Feng YJ (2005) Permeability of fractal porous media by Monte Carlo simulations. Int J Heat and Mass Transf 48(13):2787–2794CrossRefGoogle Scholar
  27. Yu CJ, Richter AG, Datta A, Durbin MK, Dutta P (1999) Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys Rev Lett 82:2326CrossRefGoogle Scholar
  28. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Yongjin Feng
    • 1
    • 2
  • Boming Yu
    • 1
  • Kaiming Feng
    • 2
  • Peng Xu
    • 1
  • Mingqing Zou
    • 1
  1. 1.Department of PhysicsHuazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Southwestern Institute of PhysicsChengduP.R. China

Personalised recommendations