Advertisement

Structural characterisation of the silica and alumina Zener pinning phases in nanocrystalline CeO2 by 29Si and 27Al nuclear magnetic resonance

  • L. A. O’Dell
  • S. L. P. Savin
  • A. V. Chadwick
  • M. E. Smith
Research Paper
  • 93 Downloads

Abstract

Nanocrystalline CeO2 samples have been manufactured using sol-gel techniques, containing either 15 % silica or 10 % alumina by weight to restrict growth of the ceria nanocrystals during annealing by Zener pinning. 29Si and 27Al MAS NMR have been used to investigate the structure of these pinning phases over a range of annealing temperatures up to 1000 °C, and their effect on the CeO2 morphology has been studied using electron microscopy. The silica pinning phase resulted in CeO2 nanocrystals of average diameter 19 nm after annealing at 1000 °C, whereas the alumina pinned nanocrystals grew to 88 nm at the same temperature. The silica pinning phase was found to contain a significant amount of inherent disorder indicated by the presence of lower n Qn species even after annealing at 1000 °C. The alumina phase was less successful at restricting the growth of the ceria nanocrystals, and tended to separate into larger agglomerations of amorphous alumina, which crystallised to a transition alumina phase at higher temperatures.

Keywords

Nanocrystal Nanocrystalline Ceria CeO2 Zener pinning Nuclear magnetic resonance Restricting growth Sol-gel 29Si NMR 27Al NMR Silica Alumina Instrumentation 

Notes

Acknowledgements

The EPSRC are thanked for funding the collaboration between Warwick and Kent on nanocrystalline materials through grants (GR/S61881 and GR/S61898). MES thanks both EPSRC and the University of Warwick for partial funding of NMR equipment at Warwick. Steve York is also thanked for his help with electron microscopy.

References

  1. Al-Angari Y (2002) Studies of methods to restrict the grain growth of nanocrystalline metal oxides. PhD Thesis, University of KentGoogle Scholar
  2. Cai SH, Rashkeev SN, Pantelides ST, Sohlberg K (2003) Phase transformation mechanism between γ- and θ-alumina. Phys Rev B 67:224104CrossRefGoogle Scholar
  3. Chadwick AV, Savin SLP, O’Dell LA, Smith ME (2006) Keeping it small– restricting the growth of nanocrystals. J Phys: Condens Matter 18:163–170CrossRefGoogle Scholar
  4. Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Defect and transport properties of nanocrystalline CeO2-x. Appl Phys Lett 69:185–187CrossRefGoogle Scholar
  5. Djuričić B, Pickering S, McGarry D, Tambuyser P (1999) Preparation and properties of alumina-ceria nano-nano composites. J Mater Sci 34:1911–1919CrossRefGoogle Scholar
  6. Guillou N, Nistor LC, Fuess H, Hahn H (1997) Microstructural studies of nanocrystalline CeO2 produced by gas condensation. Nanostruct Mater 8:545–557CrossRefGoogle Scholar
  7. Guzman J, Carrettin S, Corma A (2005) Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J Am Chem Soc 127:3286–3287CrossRefGoogle Scholar
  8. Kemp TF (2004) High field solid state 27Al NMR of ceramics and glasses. MSc Thesis, University of WarwickGoogle Scholar
  9. Kleinlogel C, Gauckler LJ (2001) Sintering of nanocrystalline CeO2 ceramics. Adv Mater 13:1081–1085CrossRefGoogle Scholar
  10. Koch KT, Saraf L (2004) Synthesis and characterisation of pure and doped ceria films by sol-gel and sputtering. US Dept Energy J Undergr Res 4:84–90Google Scholar
  11. MacKenzie KJD, Smith ME (2002) Multinuclear solid state NMR of inorganic materials. PergamonGoogle Scholar
  12. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid state NMR spectra. Magn Reson Chem 40:70–76CrossRefGoogle Scholar
  13. Nguefack M, Popa AF, Rossignol S, Kappenstein C (2003) Preparation of alumina through a sol-gel process. Synthesis, characterisation, thermal evolution and model of intermediate boehmite. Phys Chem Chem Phys 5:4279–4289CrossRefGoogle Scholar
  14. O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2005) Structural studies of silica- and alumina-pinned nanocrystalline SnO2. Nanotechnology 16:1836–1843CrossRefGoogle Scholar
  15. O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2007a) A 27Al, 29Si, 25Mg and 17O NMR investigation of alumina and silica Zener pinned, sol-gel prepared nanocrystalline ZrO2 and MgO. Faraday Discuss 134:83–102CrossRefGoogle Scholar
  16. O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2007b) A multinuclear magic angle spinning NMR investigation of sol-gel and ball-milled nanocrystalline Ga2O3 Appl Magn Reson 32:527–546CrossRefGoogle Scholar
  17. O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2007c) Structural characterization of SiO2 and Al2O3 Zener-pinned nanocrystalline TiO2 by NMR, XRD and electron Microscopy. J Phys Chem C 111:13740–13746CrossRefGoogle Scholar
  18. O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2007d) A 27Al MAS NMR study of a sol-gel produced alumina: identification of the NMR parameters of the θ-Al2O3 transition alumina phase. Solid State Nucl Magn Reson 30:169–173CrossRefGoogle Scholar
  19. Palkar VR, Ayyub P, Chattopadhyay S, Multani M (1996) Size-induced structural transitions in the Cu-O and Ce-O systems. Phys Rev B 53:2167–2170CrossRefGoogle Scholar
  20. Patsalas P, Logothetidis S, Sygellou L, Kennou S (2003) Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys Rev B 68:035104CrossRefGoogle Scholar
  21. Piras A, Troverelli A, Dolcetti G (2000) Remarkable stabilization of transition alumina operated by ceria under reducing and redox conditions. Appl Catal B: Environ 28:L77–L81CrossRefGoogle Scholar
  22. Savin SLP, Chadwick AV, Smith ME, O’Dell LA (2007) EXAFS and XRD studies of nanocrystalline cerium oxide: The effect of preparation method on the microstructure. Phys Status Solidi 4(3):719–722CrossRefGoogle Scholar
  23. Smith ME (1993) Application of Al-27 NMR techniques to structure determination in solids. Appl Magn Reson 4:1–64CrossRefGoogle Scholar
  24. Tsunekawa S, Sivamohan R, Ito A, Kasuya A, Fukuda T (1999) Structural study on monosize CeO2−x nano-particles. Nanostruct Mater 11:141–147CrossRefGoogle Scholar
  25. Tsunekawa S, Ishikawa K, Li ZQ, Kawazoe Y, Kasuya A (2000) Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett 85:3440–3443CrossRefGoogle Scholar
  26. Wen HL, Yen FS (2000) Growth characteristics of boehmite-derived ultrafine theta and alpha-alumina particles during phase transformation. J Cryst Growth 208:696–708CrossRefGoogle Scholar
  27. Wu Z, Guo L, Li H, Yang Q, Li Q, Zhu H (2000) EXAFS study on the local atomic structures around Ce in CeO2 nanoparticles. Mater Sci Eng A 286:179–182CrossRefGoogle Scholar
  28. Wu L, Wiesmann HJ, Moodenbaugh AR, Klie RF, Zhu Y, Welch DO, Suenaga M (2004) Oxidation state and lattice expansion of CeO2−x nanoparticles as a function of particle size. Phys Rev B 69:125415CrossRefGoogle Scholar
  29. Zener C, quoted in Smith CS (1948) Grains, phases and interphases; an interpretation of microstructure. Trans Metallurg Soc 175:15–51Google Scholar
  30. Zhang J, Ju X, Wu ZY, Liu T, Hu TD, Xie YN (2001) Structural characteristics of cerium oxide nanocrystals prepared by microemulsion method. Chem Mater 13:4192–4197CrossRefGoogle Scholar
  31. Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl Phys Lett 80:127–129CrossRefGoogle Scholar
  32. Zhou Y (1998) The influence of redox reaction of the sintering of cerium oxide. J Mater Synth Process 6:411–414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • L. A. O’Dell
    • 1
  • S. L. P. Savin
    • 2
  • A. V. Chadwick
    • 2
  • M. E. Smith
    • 1
  1. 1.Department of PhysicsUniversity of WarwickCoventryUK
  2. 2.School of Physical SciencesUniversity of KentCanterburyUK

Personalised recommendations