Advertisement

Journal of Nanoparticle Research

, Volume 10, Issue 7, pp 1203–1208 | Cite as

Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

  • Yusuke Kondo
  • Yasuko Okumura
  • Chifumi Oi
  • Wataru Sakamoto
  • Toshinobu Yogo
Brief Communication
  • 120 Downloads

Abstract

Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

Keywords

Nanoparticles Nanocomposites Metal-organic Barium titanate Direct current field processing 

References

  1. Alivisatos PA (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271(5251):933–937CrossRefGoogle Scholar
  2. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317CrossRefGoogle Scholar
  3. Bradley DC, Mehrotra RC, Gaur DP (1978) Metal alkoxide. Academic, New York, p 118Google Scholar
  4. Charles SW, Popplewell J (1980) Ferromagnetic liquids. In: Wohlfarth EP (ed) Ferromagnetic materials, vol. 2. North-Holland, Amsterdam, pp 509–559Google Scholar
  5. Cullity BD (1978) Elements of x-ray diffraction. Addison-Wesley, Reading, MA, p 284Google Scholar
  6. Gates BD, Xu Q, Stewart M, Ryan D, Wilson CG, Whitesides GM (2005) New approaches to nanofabrications: molding, printing and other techniques. Chem Rev 105(4):1171–1196CrossRefGoogle Scholar
  7. Gomez-Romero C, Sanchez C (2004) Hybrid materials, functional applications. An Introduction. Functional hubrid materials, Wiley-VCH Weinheim, pp 4–14Google Scholar
  8. Jona F, Shirane G (1993) Barium titanate. Ferroelectric crystals. Dover, New York, pp 108–215Google Scholar
  9. Kondo K, Shimura T, Sakamoto W, Yogo T (2006) Field-assisted synthesis of BaTiO3 particle/polyvinylbutyral composite film. J Mater Res 21(7):1843–1848CrossRefGoogle Scholar
  10. Last JT (1957) Infrared-absorption studies on barium titanate and related materials. Phys Rev 105(6):1740–1750CrossRefGoogle Scholar
  11. Perry CH, Hall DB (1965) Temperature dependence of the Raman spectrum of BaTiO3. Phys Rev Lett 15(17):700–702CrossRefGoogle Scholar
  12. Puri DM, Pande KC, Mehrotra RC (1962) Derivatives of titanium with compounds having bidentate ligands. J Less-Common Metals 4(5):393–398CrossRefGoogle Scholar
  13. Yogo T, Yamada S, Kikuta K, Hirano S (1994) Synthesis of barium titanate/polymer composites from metal alkoxide. J Sol-Gel Sci Tech 2(1–3):175–179CrossRefGoogle Scholar
  14. Yogo T, Yamamoto T, Sakamoto W, Hirano S (2004) In situ synthesis of nanocrystalline BaTiO3 particle-polymer hybrid. J Mater Res 19(11):3290–3297CrossRefGoogle Scholar
  15. Yogo T, Ukai H, Sakamoto W, Hirano S (1999) Synthesis of PbTiO3/organic hybrid from metalorganic compounds. J Mater Res 14(8):3275–3280CrossRefGoogle Scholar
  16. Yogo T, Banno K, Sakamoto W, Hirano S (2003) Synthesis of a KNbO3 particle/polymer hybrid from metalorganics. J Mater Res 18(7):1679–1685CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yusuke Kondo
    • 1
  • Yasuko Okumura
    • 1
  • Chifumi Oi
    • 1
  • Wataru Sakamoto
    • 1
  • Toshinobu Yogo
    • 1
  1. 1.Division of Nanomaterials Scinece, EcoTopia Science InstituteNagoya UniversityNagoyaJapan

Personalised recommendations