Advertisement

Journal of Nanoparticle Research

, Volume 10, Issue 4, pp 625–632 | Cite as

Synthesis of Pd and Rh metal nanoparticles in the interlayer space of organically modified montmorillonite

  • Hasmukh A. Patel
  • Hari C. Bajaj
  • Raksh Vir Jasra
Research Paper

Abstract

This study reports the synthesis of palladium and rhodium metal nanoparticles supported on montmorillonite (MMT) and partially organically modified MMT (POMM) using tetraamine palladium and hexaamine rhodium complex as precursor for palladium and rhodium respectively. The synthesized nanoparticles were characterized by powder X-ray diffraction PXRD and TEM. The PXRD study shows characteristic crystallographic planes for Pd and Rh metal and confirm the formation of metal nanoparticles in MMT and POMM. The TEM images reveal the effect of organic modification of MMT on decreasing particle size of Pd and Rh metal. The Pd and Rh metal nanoparticles are agglomerated in pristine MMT while nanoparticles are well dispersed in POMM. ICP-AES analysis was carried out to estimate quantitative amount of Pd and Rh metal in MMT and POMM.

Keywords

Palladium Rhodium Nanoparticles Montmorillonite Organoclay Synthesis Dispersion 

Notes

Acknowledgement

We thank Dr. P. K. Ghosh, Director, Central Salt & Marine Chemicals Research Institute, Bhavnagar for taking keen interest in this work and also providing the facilities; to CSIR for funding under Network Project: Organic-Inorganic Hybrids and Nanocomposites - COR 0004.

References

  1. Bailar JC (1953) Inorganic Syntheses, vol 4. McGraw-Hill, USA, p 180CrossRefGoogle Scholar
  2. Berkovich Y, Garti N (1997) Catalytic colloidal Pd dispersions in water-organic solutions of quaternary ammonium salt. Colloid Surf A 128:91–99CrossRefGoogle Scholar
  3. Bonczek JL, Harris WG, Nkedi-Kizza P (2002) Monolayer to bilayer transitional arrangements of hexadecyltrimethylammonium cations on Na-Montmorillonite. Clays Clay Miner 50(1):11–17CrossRefGoogle Scholar
  4. Dekany I, Turi L, Kiraly Z (1999) CdS, TiO2 and Pd° nanoparticles growing in the interlamellar space of montmorillonite in binary liquids. Appl Clay Sci 15:221–239CrossRefGoogle Scholar
  5. Esumi K, Suzuki A, Aihara N, Usui K, Toringoe K (1998) Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14:3157–3159CrossRefGoogle Scholar
  6. Gommes CJ, Jong K, Pirard JP, Blacher S (2005) Assessment of the 3D localization of metallic nanoparticles in Pd/SiO2 cogelled catalysts by electron tomography. Langmuir 21:12378–12385CrossRefGoogle Scholar
  7. Jhung SH, Lee JH, Lee JM, Lee JH, Hong DY, Kim MW, Chang JS (2005) Effect of preparation conditions on the hydrogenation activity and metal dispersion of Pt/C and Pd/C catalysts. Bull Korean Chem Soc 26(4):563–569CrossRefGoogle Scholar
  8. Kiraly Z, Dekany I, Mastalir A, Bartoky M (1996) In situ generation of palladium nanoparticles in smectite clays. J Catal 161:401–408CrossRefGoogle Scholar
  9. Kiraly Z, Veisz B, Mastalir A, Razgac Z, Dekany I (1999) Preparation of an organophilic palladium montmorillonite catalyst in a micellar system. Chem Commun 19:1925–1926CrossRefGoogle Scholar
  10. Kiraly Z, Veisz B, Mastalir A, Kofarago Gy (2001) Preparation of ultrafine palladium particles on cationic and anionic clays, mediated by oppositely charged surfactants: catalytic probes in hydrogenations. Langmuir 17:5381–5387CrossRefGoogle Scholar
  11. Mastalir A, Kiraly Z, Szollosi Gy, Bartoky M (2000) Preparation of organophilic Pd–montmorillonite; an efficient catalyst in alkyne semihydrogenation. J Catal 194:146–152CrossRefGoogle Scholar
  12. Mayer ABR, Mark JE (1997) Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems. Colloid Polym Sci 275:333–340CrossRefGoogle Scholar
  13. Mishra MK, Tyagi B, Jasra RV (2003) Effect of synthetic parameters on structural, textural and catalytic properties of nanocrystalline sulfated zirconia prepared by Sol-gel technique. Ind Eng Chem Res 42:5727–5736CrossRefGoogle Scholar
  14. Papp Sz, Dekany I (2001) Growth of nearly monodisperse palladium nanoparticles on disaggregated kaolinite lamellae. Prog Colloid Poly Sci 117:94–100CrossRefGoogle Scholar
  15. Papp Sz, Dekany I (2002) Growth of Pd nanoparticles on layer silicates hydrophobized with alkyl chains in ethanoltetrahydrofuran mixtures. Colloid Polym Sci 280:956–962CrossRefGoogle Scholar
  16. Papp Sz, Szel J, Oszko A, Dekany I (2004) Synthesis of Polymer-Stabilized Nanosized Rhodium Particles in the Interlayer Space of Layered Silicates. Chem Mater 16:1674–1685CrossRefGoogle Scholar
  17. Papp Sz, Szucs A, Dekany I (2001) Colloid synthesis of monodisperse Pd nanoparticles in layered silicates. Solid State Ionics 141–142:169–176CrossRefGoogle Scholar
  18. Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci 29(2):133–145CrossRefGoogle Scholar
  19. Patel HA, Somani RS, Bajaj HC, Jasra RV (2007a) Synthesis and characterization of organic bentonite using Gujarat and Rajasthan clays. Curr Sci 92(7):1004–1009Google Scholar
  20. Patel HA, Somani RS, Bajaj HC, Jasra RV (2007b) Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Appl Clay Sci 35:194–200CrossRefGoogle Scholar
  21. Schulz PG, Gonzalez MG, Quincoces CE, Gigola CE (2005) Methane reforming with carbon dioxide; the behavior of Pd/r-Al2O3 and Pd-CeOx/r-Al2O3 catalysts. Ind Eng Chem Res 44:9020–9029CrossRefGoogle Scholar
  22. Szucs A, Bergera F, Dekany I (2000) Preparation and structural properties of Pd nanoparticles in layered silicate. Colloid Surf A 174:387–402CrossRefGoogle Scholar
  23. Veisz B, Kiraly Z, Toth L, Pecz B (2002) Catalytic probe of the surface statistics of palladium crystallites deposited on montmorillonite. Chem Mater 14:2882–2888CrossRefGoogle Scholar
  24. Yonezawa T, Toshima N (1993) Polymer- and micelle-protected gold/platinum bimetallic systems: preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods. J Mol Catal 83:167–181CrossRefGoogle Scholar
  25. Yoon B, Wai CM (2005) Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J Am Chem Soc 127:17174–17175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Hasmukh A. Patel
    • 1
  • Hari C. Bajaj
    • 1
  • Raksh Vir Jasra
    • 1
  1. 1.Discipline of Inorganic Materials and CatalysisCentral Salt and Marine Chemicals Research InstituteBhavnagarIndia

Personalised recommendations