Journal of Nanoparticle Research

, Volume 10, Issue 4, pp 585–597 | Cite as

The effect of process variables on the characteristics of carbon nanotubes obtained by spray pyrolysis

Research Paper


A simple spray pyrolysis setup is used to grow multi-walled carbon nanotubes (MWCNTs), from a ferrocene solution in benzene as precursor. The effects of process variables such as growth temperature, position of the aerosol generator and position in the reactor where the sample was formed were investigated. These variables have a strong influence on the graphitization degree, homogeneity, diameter and alignment of the nanotubes, as observed by TEM, SEM, XRD and Raman spectroscopy. Vertically aligned MWCNT arrays with high density were obtained in large areas (10 × 10 mm2), with high yield (2.1 mg cm−2) and at a growth rate at 1.43 μm min−1, by a suitable choice of the experimental conditions.


Carbon nanotubes Spray pyrolysis Nanomaterials Characterization MWCNT 



Authors thank the financial support from CNPq, CT-ENERG/CNPq, PROCAD-CAPES, TWAS and Rede Nacional de Pesquisa em Nanotubos de Carbono (MCT). We also thank Dr. Marcela Mohallem Oliveira and CME-UFPR for the microscopy images. MCS thanks CAPES for the fellowship.


  1. Aguilar-Elguézabal A, Antúnez W, Alonso G, Delgado FP, Espinosa F, Miki-Yoshida M (2006) Study of carbon nanotubes synthesis by spray pyrolysis and model of growth. Diam Relat Mater 15:1329–1335CrossRefGoogle Scholar
  2. Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X et al (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474CrossRefGoogle Scholar
  3. Bai S, Li F, Yang Q, Cheng H-M, Bai J (2003) Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures. Chem Phys Lett 376:83–89CrossRefGoogle Scholar
  4. Barreiro A, Hampel S, Rümmeli MH, Kranberger C, Grüneis A, Biedermann K et al (2006) Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J Phys Chem B 110:20973–20977CrossRefGoogle Scholar
  5. Das N, Dalai A, Mohammadzadeh JSS, Adjaye J (2006) The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44:2236–2245CrossRefGoogle Scholar
  6. Deck CP, Vecchio KS (2005) Growth of well-aligned carbon nanotubes structures in successive layers. J Phys Chem B 109:12353–12357CrossRefGoogle Scholar
  7. Du G, Feng S, Zhao J, Song C, Bai S, Zhu Z (2006) Particle-wire-tube mechanism for carbon nanotubes evolution. J Am Chem Soc 128: 15405–15414CrossRefGoogle Scholar
  8. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222CrossRefGoogle Scholar
  9. Elias AL, Rodríguez-Manzo JA, McCartney MR, Golberg D, Zamudio A, Baltazar SE et al (2005) Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. Nano Lett 5:467–472CrossRefGoogle Scholar
  10. Gafney HD (1990) Spectral, photophysical and photochemical properties of Ru(bpy)32+ on porous vycor glass. Coord Chem Rev 104:113–141CrossRefGoogle Scholar
  11. Hou H, Schaper AK, Weller F, Greiner A (2002) Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem Mater 14:3990–3994CrossRefGoogle Scholar
  12. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  13. Ivanov V, Fonseca A, Nagy JB, Lucas A, Lambin P, Bernaerts D et al (1995) Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon 33:1727–1738CrossRefGoogle Scholar
  14. Jodin L, Dupuis AC, Rouvière E, Reiss P (2006) Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. J Phys Chem B 110:7328–7333CrossRefGoogle Scholar
  15. José-Yacamán M, Miki-Yoshida M, Rendón L, Santiesteban JG (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62:657–659CrossRefGoogle Scholar
  16. Kamalakaran R, Terrones M, Seeger T, Kohler-Redlich Ph, Rühle M, Kim YA et al (2000) Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl Phys Lett 77:3385–3387CrossRefGoogle Scholar
  17. Mayne M, Grobert N, Terrones M, Kamalakaran R, Rühle M, Kroto HW et al (2001) Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem Phys Lett 338:101–107CrossRefGoogle Scholar
  18. Nasibulin AJ, Moisala A, Jiang H, Kauppinen EI (2006) Carbon nanotubes synthesis from alcohols by a novel aerosol method. J Nanopart Res 8:465–475CrossRefGoogle Scholar
  19. Oh SJ, Cook DC, Townsend HE (1998) Characterization of iron oxides commonly formed as corrosion products on stell. Hyperfine Interact 112:59–65CrossRefGoogle Scholar
  20. Park YS, Choi YC, Kim KS, Chung DC, Bae DJ, An KH et al (2001) High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 39:655–661CrossRefGoogle Scholar
  21. Pinault M, Mayne-L’Hermite M, Reynald C, Pichot V, Launois P, Ballutaud D (2005) Growth of multiwalled carbon nanotubes during the initial stages of aerosol-assisted CCVD. Carbon 43:2968–2676CrossRefGoogle Scholar
  22. Saito Y, Yoshikawa T, Bandow S, Tomita M, Hayashi T (1993) Interlayer spacings in carbon nanotubes. Phys Rev B 48:1907–1909CrossRefGoogle Scholar
  23. Satishkumar BC, Govindaraj A, Rao CNR (1999) Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chem Phys Lett 307:158–162CrossRefGoogle Scholar
  24. Schnitzler MC, Oliveira MM, Ugarte D, Zarbin AJG (2003) One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem Phys Lett 381:541–548CrossRefGoogle Scholar
  25. Sen R, Govindaraj A, Rao CNR (1997) Carbon nanotubes by the metallocene route. Chem Phys Lett 267:276–280CrossRefGoogle Scholar
  26. Singh C, Shaffer MSP, Windle AH (2004) Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41:359–368CrossRefGoogle Scholar
  27. Su LF, Wang JN, Yu F, Sheng ZM, Chang H, Pak C (2006) Continuous production of single-wall carbon nanotubes by spray pyrolysis of alcohol with dissolved ferrocene. Chem Phys Lett 420:421–425CrossRefGoogle Scholar
  28. Tapasztó L, Kertész K, Vértesy Z, Horváth ZE, Koós AA, Osváth Z et al (2005) Diameter and morphology dependence on experimental conditions of carbon nanotubes arrays grown by spray pyrolysis. Carbon 43:970–977CrossRefGoogle Scholar
  29. Yudasaka M, Komatsu T, Ichihashi T, Iijima S (1997) Single-wall carbon nanotubes formation by laser ablation using double-targets of carbon and metal. Chem Phys Lett 278:102–106CrossRefGoogle Scholar
  30. Zhang X, Cao A, Wei B, Li Y, Wei J, Xu C et al (2002) Rapid growth of well-aligned carbon nanotubes array. Chem Phys Lett 362:285–290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations