Journal of Nanoparticle Research

, Volume 10, Issue 1, pp 59–67 | Cite as

Preparation and formation mechanism of strong violet luminescent CdS quantum dots by using a ligand exchange strategy

  • Tian-Long Zhang
  • Yun-Sheng Xia
  • Xue-Lian Diao
  • Chang-Qing Zhu


A simple and general method has been proposed for preparing strong violet emitting CdS quantum dots, in which a ligand exchange strategy was applied to surface passivation and functionalization with good reproducibility. The resulting quantum dots showed a visible violet luminescence with emission peak centered near 423 nm and photoluminescence quantum yields reached over 30%. Additionally, different mercapto-compounds used as ligands can make different functionalized surfaces, favoring quantum dots dispersion in different media and their further applications. It was observed that the band edge emission has the main contribution to the bright violet luminescence.


violet quantum dots CdS ligand exchange band edge emission trap emission luminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful for the financial support from National Natural Science Foundation of China (Contract No.20575002).


  1. J. Aldana, N. Lavelle, Y. Wang, X. Peng 2005. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J. Am. Chem. Soc. 127:2496CrossRefGoogle Scholar
  2. A.P. Alivisatos 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933CrossRefGoogle Scholar
  3. D. Battaglia, X. Peng 2002. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2:1027CrossRefGoogle Scholar
  4. W.C.W. Chan, S. Nie 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016CrossRefGoogle Scholar
  5. A.R. Clapp, I.L. Medintz, J.M. Mauro, B.R. Fisher, M.G. Bawendi, H. Mattoussi 2004. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126:301CrossRefGoogle Scholar
  6. A.R. Clapp, I.L. Medintz, H. Mattoussi 2006. Förster resonance energy transfer investigations using quantum-dot fluorophores. Chem. Phys. Chem. 7:47Google Scholar
  7. R. Comparelli, F. Zezza, M. Striccoli, M.L. Curri, R. Tommasi, A. Agostiano 2003 Improved optical properties of CdS quantum dots by ligand exchange. Mater. Sci. Eng. C 23:1083CrossRefGoogle Scholar
  8. J.W. Eastman 1967. Quantitative spectrofluorimetry - the fluorescence quantum yield of quinine sulfate. Photochem. Photobiol. 6:55CrossRefGoogle Scholar
  9. F. Fleischhaker, R. Zentel 2005. Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 17:1346CrossRefGoogle Scholar
  10. N. Gaponik, D. Talapin, H. Weller 2002. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106:7177CrossRefGoogle Scholar
  11. A. Henglein 1989. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89:1861CrossRefGoogle Scholar
  12. E. Jang, S. Jun, Y. Pu 2003. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem. Commun. 24:2964CrossRefGoogle Scholar
  13. E. Jang, S. Jun, Y. Chung, L. Pu 2004. Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals. J. Phys. Chem. B 108:4597CrossRefGoogle Scholar
  14. S. Jun, Jang E. 2005. Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. Chem. Commun. 36:4616CrossRefGoogle Scholar
  15. S.Y. Lee, Harris M.T. 2006. Surface modification of magnetic nanoparticles capped by oleic acids:Characterization and colloidal stability in polar solvents. J. Colloid Interface Sci. 293:401CrossRefGoogle Scholar
  16. Y. Liu, M. Kim, Y. Wang, Y.A. Wang, X. Peng 2006. Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups. Langmuir 22:6341CrossRefGoogle Scholar
  17. C.B. Murray, D.J. Norris, M.G. Bawendi 1993. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706CrossRefGoogle Scholar
  18. D.J. Norris, M.G. Bawendi 1995. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53:16338CrossRefGoogle Scholar
  19. N.M. Park, T.S. Kim, S.J. Park 2001. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78:2575CrossRefGoogle Scholar
  20. X. Peng, J. Wickham, A.P. Alivisatos 1998. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120:5343CrossRefGoogle Scholar
  21. M.M. Piepenbrock, S.M. Kelly, M. O’Neill 2006. A low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement. J. Am. Chem. Soc. 128:7087CrossRefGoogle Scholar
  22. L. Qu, X. Peng 2002. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124:2049CrossRefGoogle Scholar
  23. A. Shavel, N. Gaponik, A. Eychmuller 2004. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. J. Phys. Chem. B 108:5905CrossRefGoogle Scholar
  24. J.S. Steckel, J.P. Zimmer, M.G. Bawendi 2004. Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angew. Chem., Int. Ed. 43:2154CrossRefGoogle Scholar
  25. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller 2001. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1:207CrossRefGoogle Scholar
  26. Q. Wang, D. Pan, X. Ji 2005. A new two-phase route to high-quality CdS nanocrystals. Chem. Eur. J. 11:3843CrossRefGoogle Scholar
  27. U. Wendy, J.J. Dittmer, A.P. Alivisatos 2002. Hybrid nanorod-polymer solar cells. Science 295:2425CrossRefGoogle Scholar
  28. N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid 2004. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4:383CrossRefGoogle Scholar
  29. S.F. Wuister, I. Swart, F. van Driel, S.G. Hickey, C. de Mello Donega 2003. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 3:503CrossRefGoogle Scholar
  30. S. Xu, S. Kumar, T. Nann 2006. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 128:1054CrossRefGoogle Scholar
  31. W.W. Yu, L. Qu, W. Guo, X. Peng 2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15:2854CrossRefGoogle Scholar
  32. W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin 2004. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16:3318CrossRefGoogle Scholar
  33. W.W. Yu, X. Peng 2002. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem., Int. Ed. 41:2368CrossRefGoogle Scholar
  34. F. Zezza, R. Comparelli, M. Striccoli, M.L. Curri, R. Tommasi, A. Agostiano, M. Della Monica 2003 High quality CdS nanocrystals: surface effects. Synth. Met. 139:597CrossRefGoogle Scholar
  35. Z. Zhelev, R. Bakalova, H. Ohba, R. Jose, Y. Imai, Y. Baba 2006. Uncoated, broad fluorescent, and size-homogeneous CdSe quantum dots for bioanalyses. Anal. Chem. 78:321CrossRefGoogle Scholar
  36. B. Zorman, M.V. Ramakrishna, R.A. Friesner 1995. Quantum confinement effects in CdSe quantum Dots. J. Phys. Chem. 99:7649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Tian-Long Zhang
    • 1
  • Yun-Sheng Xia
    • 1
  • Xue-Lian Diao
    • 1
  • Chang-Qing Zhu
    • 1
  1. 1.College of Chemistry and Materials ScienceAnhui Key Laboratory of Functional Molecular Solids, Anhui Normal UniversityWuhuP. R. China

Personalised recommendations