Skip to main content

Advertisement

Log in

Health risk assessment for nanoparticles: A case for using expert judgment

  • Special issue occupational safety
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Uncertainties in conventional quantitative risk assessment typically relate to values of parameters in risk models. For many environmental contaminants, there is a lack of sufficient information about multiple components of the risk assessment framework. In such cases, the use of default assumptions and extrapolations to fill in the data gaps is a common practice. Nanoparticle risks, however, pose a new form of risk assessment challenge. Besides a lack of data, there is deep scientific uncertainty regarding every aspect of the risk assessment framework: (a) particle characteristics that may affect toxicity; (b) their fate and transport through the environment; (c) the routes of exposure and the metrics by which exposure ought to be measured; (d) the mechanisms of translocation to different parts of the body; and (e) the mechanisms of toxicity and disease. In each of these areas, there are multiple and competing models and hypotheses. These are not merely parametric uncertainties but uncertainties about the choice of the causal mechanisms themselves and the proper model variables to be used, i.e., structural uncertainties. While these uncertainties exist for PM2.5 as well, risk assessment for PM2.5 has avoided dealing with these issues because of a plethora of epidemiological studies. However, such studies don’t exist for the case of nanoparticles. Even if such studies are done in the future, they will be very specific to a particular type of engineered nanoparticle and not generalizable to other nanoparticles. Therefore, risk assessment for nanoparticles will have to deal with the various uncertainties that were avoided in the case of PM2.5. Consequently, uncertainties in estimating risks due to nanoparticle exposures may be characterized as ‘extreme’. This paper proposes a methodology by which risk analysts can cope with such extreme uncertainty. One way to make these problems analytically tractable is to use expert judgment approaches to study the degree of consensus and/or disagreement between experts on different parts of the exposure–response paradigm. This can be done by eliciting judgments from a wide range of experts on different parts of the risk causal chain. We also use examples to illustrate how studying expert consensus/disagreement helps in research prioritization and budget allocation exercises. The expert elicitation can be repeated over the course of several years, over which time, the state of scientific knowledge will also improve and uncertainties may possibly reduce. Results from expert the elicitation exercise can be used by risk managers or managers of funding agencies as a tool for research prioritization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson E.L., Hattis D.H. (1999). When and how can you specify a probability distribution when you don’t know much? Risk Anal. 19:43–68

    Google Scholar 

  • Araujo L., Lobenberg R., Kreuter J. (1999). Influence of the surfactant concentration on the body distribution of nanoparticles. J. Drug Target. 6:373–385

    Article  CAS  Google Scholar 

  • Barnes P.J. (2001). Neurogenic inflammation in the airways. Respir. Physiol. 125:145–154

    Article  CAS  Google Scholar 

  • Brown D.M., Wilson M.R., MacNee W., Stone V., Donaldson K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175(3):191–199

    Article  CAS  Google Scholar 

  • Brown D.M., Stone V., Findlay P., MacNee W., Donaldson K. (2000). Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup. Environ. Med. 57(10):685–691

    Article  CAS  Google Scholar 

  • Brown J.S., Zeman K.L., Bennett W.D. (2002). Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Crit. Care Med. 166:1240–1247

    Article  Google Scholar 

  • Burnett R.T., Brook J., Dann T., Delocla C., Philips O., Cakmak S., Vincent R., Goldberg M.S., Kreski D. (2000). Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 12 (Suppl. 4):15–39

    Article  CAS  Google Scholar 

  • Campen M.J., Nolan J.P., Schladweiler M.C.J., Kodavanti U.P., Evansky P.A., Costa D.L., Watkinson W.P. (2001). Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: A potential interaction between nickel and vanadium sulfate. Toxicol. Sci. 64:243–252

    Article  CAS  Google Scholar 

  • Campen M.J., Watkinson W.P., Lehmann J.R., Costa D.L. (1996). Modulation of residual oil fly ash (ROFA) particle toxicity in rats by pulmonary hypertension and ambient temperature. Am. J. Respir. Crit. Care Med. 153:A542

    Google Scholar 

  • Casman E.A., Morgan M.G., Dowlatabadi H. (1999). Mixed levels of uncertainty in complex policy models. Risk Anal. 19(1):33–42

    Google Scholar 

  • Chalupa D.C., Morrow P.E., Oberdörster G., Utell M.J., Frampton M.W. (2004). Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect 112:879–882

    Article  CAS  Google Scholar 

  • Cheng Y.S., Yeh H.C., Guilmette R.A., Simpson S.Q., Cheng K.H., Swift D.L. (1996). Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Sci. Technol. 25:274–291

    CAS  Google Scholar 

  • Coleman K.P., Toscano W.A. Jr., Wiese T.E. (2003). QSAR models of the in vitro estrogen activity of bis phenol A analogs. QSAR Comb. Sci. 22:78–88

    Article  CAS  Google Scholar 

  • Cooke R.M., 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science. Oxford University Press.

  • Costa D.L., Lehmann J.R., Frazier L.T., Doerfler D., Ghio A. (1996). Pulmonary hypertension: A possible risk factor in particulate toxicity. Am. J. Respir. Crit. Care Med. 149:A840

    Google Scholar 

  • Cullen R.T., Tran C.L., Buchanan D., Davis J.M.C., Searl A., Jones A.D., Donaldson K. (2000). Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal. Toxicol. 12(12):1089–1111

    Article  CAS  Google Scholar 

  • Dick C.A.J., Brown D.M., Donaldson K., Stone V. (2003). The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal. Toxicol. 15(1):39–52

    Article  CAS  Google Scholar 

  • Dockery D.W., Pope C.A. III, Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G. Jr., Speizer F.E. (1993). An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329:1753–1759

    Article  CAS  Google Scholar 

  • Donaldson K., 1999. In: Shuker L. and Levy L. eds. Mechanisms for Toxicity: In vitro; IEH Report on: Approaches to Predicting Toxicity from Occupational Exposure to Dusts. Report R11. Page Bros., Norwich, UK, pp. 17–26.

  • Donaldson K., P.H. Beswick & P.S. Gilmour, 1996. Free radical activity associated with the surface of unifying factor in determining biological activity? Toxicol. Lett.(Pg) 1–3.

  • Donaldson K., Stone V., Gilmore P.S., Brown D.M., MacNee W. (2000). Ultrafine particles: Mechanisms of lung injury. Phil. Trans. R. Soc. Lond. A 358:2741–2749

    Article  CAS  Google Scholar 

  • Dreher K., R. Jaskot, J. Richards & J. Lehmann, 1996. Acute pulmonary toxicity of size-fractionated ambient air particulate matter. Am. J. Respir. Crit. Care Med. 153, A15.

  • Evans J.S., Gray G.M., Sielken R.L., Smith A.E., Valdez-Flores C., Graham J.D. (1994). Use of probabilistic expert judgment in distributional analysis of carcinogenic potency. Risk Anal. 20:15–34

    CAS  Google Scholar 

  • Fairley D. (1999). Daily mortality and air pollution in Santa Clara County, California: 1989–1996. Environ. Health Perspect. 107:637–641

    CAS  Google Scholar 

  • Ferin J., Oberdörster G., Penney D.P. (1992). Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Molec. Biol. 6:535–542

    CAS  Google Scholar 

  • Genest C., Zidek J.V. (1986). Combining probability distributions: A critique and an annotated bibliography. Stat. Sci. 1: 114–148

    Google Scholar 

  • Ghio A.J., Devlin R.B. (2001). Inflammatory lung injury after bronchial instillation of air pollution particles. Am. J. Respir. Crit. Care Med. 164:704–708

    CAS  Google Scholar 

  • Ghio A.J., Kim C., Devlin R.B. (2000). Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am. J. Respir. Crit. Care Med. 162:981–988

    CAS  Google Scholar 

  • Godleski J.J., Sioutas C., Katler M., Koutrakis P. (1996). Death from inhalation of concentrated ambient air particles in animal models of pulmonary disease. Am. J. Respir. Crit. Care Med. 153:A15

    Google Scholar 

  • Hahn F.F., E.B. Barr, M. Ménache & J.C. Seagrave, 2005. Particle Size and Composition Related to Adverse Health Effects in Aged, Sensitive Rats. Research Report 129, Health Effects Institute, Cambridge, MA.

  • Hawkins N.C., Evans J.S. (1989). Subjective estimation of toluene exposures: A calibration study of industrial hygienists. Appl. Ind. Hyg. 4:61–68

    CAS  Google Scholar 

  • Helmer O. (1966). Social Technology. Basic Book, New York

    Google Scholar 

  • Heyder J., Gebhart J., Rudolf G., Schiller C.F., Stahlhofen W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J. Aerosol Sci. 17:811–825

    Article  Google Scholar 

  • Ibald-Mulli A., Stieber J., Wichmann H.-E., Koenig W., Peters A. (2001). Effects of air pollution on blood pressure: A population based approach. Am. J. Public Health 91:571–577

    CAS  Google Scholar 

  • International Commission on Radiological Protection (ICRP), 1994. Human Respiratory Tract Model for Radiological Protection, ICRP Publication 66. Pergamon Press, Elmsford, NY.

  • James A.C., W. Stahlhofen, G. Rudolf, R. Köbrich, J.K. Briant, M.J. Egan, W. Nixon & A. Birchall, 1994. In: Deposition of Inhaled Particles; Human Respiratory Tract Model for Radiological Protection, Annex D, Annals of the ICRP. Pergamon Press, Oxford, UK, pp. 231–299.

  • Jani P.U., Florence A.T., McCarthy D.E. (1992). Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int. J. Pharm. 84:245–252

    Article  CAS  Google Scholar 

  • Jani P.U., McCarthy D.E., Florence A.T. (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int. J. Pharm. 105:157–168

    Article  CAS  Google Scholar 

  • Jaques P.A., Kim C.S. (2000). Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12:715–731

    Article  CAS  Google Scholar 

  • Jia G., Wang H., Yan L., Wang X., Pei R., Yan T., et al. (2005). Cytotoxicity of carbon nanomaterials: Single wall nanotube, multiwall nanotube, and fullerene. Environ. Sci. Technol. 39:1378–1383

    Article  CAS  Google Scholar 

  • Kahn H., Wiener A.J. (1967). The Year 2000, A Framework for Speculation. Macmillan, New York

    Google Scholar 

  • Kandlikar M., J. Risbey & S. Dessai, 2005. Representing and communicating deep uncertainity in climate change assessment. C R Geosci 2337, 443–455

    Google Scholar 

  • Kirchner C., Liedl T., Kudera S., Pellegrino T., Munoz J.A., Gaub H.E. et al. (2001). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5:331–338

    Article  CAS  Google Scholar 

  • Kreyling W., Semmler M., Erbe F., Mayer P., Takenaka S., Schulz H. et al. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size-dependent but very low. J. Toxicol. Environ. Health 65A:1513–1530

    Article  CAS  Google Scholar 

  • Kuhlbusch T.A., Neumann S., Fissan H. (2004). Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production. J. Occup. Environ. Hyg. 1(10):660–671

    Article  CAS  Google Scholar 

  • Lademann J., Weigmann H.-J., Rickmeyer C., Barthelmes H., Schaefer H., Mueller G., Sterry W. (1999). Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Appl. Skin Physiol. 12:247–256

    Article  CAS  Google Scholar 

  • Lam C.W., James J.T., McCluskey R., Arepalli S., Hunter R.L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. CRC Crit. Rev. Toxicol. 36:189–217

    Article  CAS  Google Scholar 

  • Lison D., Lardot C., Huaux F., Zanetti G., Fubini B. (1997). Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch. Toxicol. 71(12):725–729

    Article  CAS  Google Scholar 

  • Linstone H.A., Turoff M. (1975). The Delphi Method, Techniques and Applications. Addison Wesley, Reading, MA

    Google Scholar 

  • Lippmann M. (1999). Sampling Criteria for Fine Fractions of Ambient Air. In: Vincent J.H. (eds), Particle Size-Selective Sampling for Particulate Air Contaminants. American Conference of Governmental Industrial Hygienists (ACGIH), Cincinnati, OH, pp. 97–118

    Google Scholar 

  • Lippmann M., K. Ito, A. Nadas & R.T. Burnett, 2000. Association of particulate matter components with daily mortality and morbidity in urban populations. Research Report 95, Health Effects Institute, Cambridge, MA.

  • MacNee W., Donaldson K. (2003). Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur. Resp. J. 21:47S–51S

    Article  CAS  Google Scholar 

  • Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., Castranova V. (2004). Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A 67:87–107

    CAS  Google Scholar 

  • Moghimi S.M., Hunter A.C., Murray J.C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53:283–318

    CAS  Google Scholar 

  • Moolgavkar S.H., Luebeck E.G. (1996). A critical review of the evidence on particulate air pollution and mortality. Epidemiology 7:420–428

    Article  CAS  Google Scholar 

  • Moolgavkar S.H., Luebeck E.G., Hall T.A., Anderson E.L. (1995). Air pollution and daily mortality in Philadelphia. Epidemiology 6:476–484

    Article  CAS  Google Scholar 

  • Morgan M.G., Henrion M. (1990). Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge, University Press

    Google Scholar 

  • Morgan M.G., Keith D.(1995). Subjective judgments by climate experts. Environ. Sci. Technol. 29(10):468–476

    Google Scholar 

  • Morgan K. (2005). Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Anal. 25(6):1–15

    Article  Google Scholar 

  • Mossman B.T., Bignon J., Corn M., Seaton A., Gee J.B.L. (1990). Asbestos: Scientific developments and implications for public policy. Science 247:294–301

    Article  CAS  Google Scholar 

  • Nemmar A., Hoet P.H.M., Vanquickenborne B., Dinsdale D., Thomeer M., Hoylaerts M.F., Vanbilloen H., Mortelmans L., Nemery B. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    Article  CAS  Google Scholar 

  • NRC/NAS Committee on the Institutional Means for Assessment of Risks to Public Health, Risk Assessment in the Federal Government (The Redbook), 1983.

  • Oberdörster G., Oberdörster E., Oberdörster J. (2005). Invited review: Nanotechnology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839

    Google Scholar 

  • Oberdörster G., Ferin J., Lehnert B.E. (1994). Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect. 102(Suppl. 5):173–179

    Google Scholar 

  • Oberdörster G. (2000). Toxicology of ultrafine particles: In vivo studies. Philos. Trans. R. Soc. Lond., Ser. A 358:2719–2740

    Article  Google Scholar 

  • Oberdörster G., Gelein R.M., Ferin J., Weiss B. (1995).Association of particulate air pollution and acute mortality: Involvement of ultrafine particles? Inhal. Toxicol. 7: 111–124

    Google Scholar 

  • Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C. (2005b). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16:437–445

    Article  CAS  Google Scholar 

  • Oberdörster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D., Olin S., Monteiro-Riviere N., Warheit D., Yang H., ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005c). Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fiber Toxicol. 2:8–43

    Article  CAS  Google Scholar 

  • Pekkanen J., Brunner E.J., Anderson H.R., Tiittanen P., Atkinson R.W. (2000). Daily concentrations of air pollution and plasma fibrinogen in London. Occup. Environ. Med. 57:818–822

    Article  CAS  Google Scholar 

  • Penttinen P., Timonen K.L., Tiittanen P., Mirme A., Ruuskanen J., Pekkanen J. (2001). Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur. Resp. J. 17:428–435

    Article  CAS  Google Scholar 

  • Peters A., Wichmann H.E., Tuch T., Heinrich J., Heyder J. (1997b). Respiratory effects are associated with the number of ultra-fine particles. Am. Respir. Crit. Care Med. 155:1376–1383

    CAS  Google Scholar 

  • Peters A., Doring A., Wichmann H.-E., Koenig W. (1997a). Increased plasma viscosity during an air pollution episode: A link to mortality? Lancet 349:1582–1587

    Article  CAS  Google Scholar 

  • Peters A., Frohlich M., Doring A., Immervoll T., Wichmann H-E., Hutchinson W.L., Pepys M.B., Koenig W. (2001). Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur. Heart J. 22:1198–1204

    Article  CAS  Google Scholar 

  • Phalen R.F. (1999). Airway Anatomy and Physiology. In: Vincent J.H. (eds), Particle Size-Selective Sampling for Particulate Air Contaminants. American Conference of Governmental Industrial Hygienists (ACGIH), Cincinnati, OH, USA

    Google Scholar 

  • Pope C.A. III, Burnett R.T., Thun M.J., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  • Preining O. (1998). The physical nature of very, very small particles and its impact on their behaviour. J. Aerosol Sci. 29:481–495

    Article  CAS  Google Scholar 

  • Quan C. & L.C. Chen, 2005. In: Toxicity of Manufactured Nanomaterials; Proceedings of the 2nd International Symposium on Nanotechnology and Occupational Health, Minneapolis, MN, p. 24.

  • Ramachandran G. (2001). Retrospective exposure assessment using Bayesian methods. Ann. Occup. Hyg. 45(8):651–667

    Article  CAS  Google Scholar 

  • Ramachandran G., Vincent J.H. (1999). A Bayesian approach to retrospective exposure assessment. Appl. Occup. Environ. Hyg. 14:547–557

    Article  CAS  Google Scholar 

  • Ramachandran G., Banerjee S., Vincent J.H. (2003) Expert judgment and occupational hygiene: Application to aerosol speciation in the nickel primary production industry. Ann. Occup. Hyg. 47:461–475

    Article  CAS  Google Scholar 

  • Ramachandran G., Watts W.F., Kittelson D. (2005). Mass, surface area, and number metric in diesel occupational exposure assessment. J. Environ. Monit. 7(7):728–735

    Article  CAS  Google Scholar 

  • Renwick L.C., Donaldson K., Clouter A. (2001). Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharmacol. 172:119–127

    Article  CAS  Google Scholar 

  • Risbey J.S. & M. Kandlikar, 2002. Expert assessment of uncertainties in detection and attribution of climate change. Bull. Am. Meteorol. Soc. 1317–1326.

  • Risbey J.S., Kandlikar M., Karoly D.J. (2000). A protocol to articulate and quantify uncertainties in climate change detection and attribution. Climate Res. 16(1):61–78

    Google Scholar 

  • Roco M.C., 2005, International perspective on government nanotechnology funding in 2005. JNR 7(6).

  • The Royal Society and The Royal Academy of Engineering, 2004. Nanoscience and Nanotechnologies: Opportunities and Uncertainties.

  • Salvi S., Blomberg A., Rudell B., Kelly F., Sandstrom T., Holgate S.T., Frew A. (1999). Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am. J. Respir. Crit. Care Med. 159:702–709

    CAS  Google Scholar 

  • Salvi S., Nordenhall C., Blomberg A., Rudell B., Pourazer J., Kelly F.J., Wilson S., Sandstrom T., Holgate S.T., Frew, A. (2000). Acute exposure to diesel exhaust increases IL-8 and GRO-a production in healthy human airways. Am. J. Respir. Crit. Care Med. 161:550–557

    CAS  Google Scholar 

  • Samet J.M., S.L. Zeger & K. Berhane, 1995. In: The Association of Mortality and Particulate Air Pollution; Particulate Air Pollution and Daily Mortality: Replication and Validation of Selected Studies (The Phase I.A Report of the Particle Epidemiology Evaluation Project). Health Effects Institute, Cambridge, MA, pp. 3–104.

  • Samet J.M., S.L. Zeger, F. Domenici, F. Curreiro, I. Coursac, D.W. Dockery, J. Schwartz & A. Zanobetti, 2000. The National Morbidity, Mortality, and Air Pollution Study, Part II: Morbidity and Mortality from Air Pollution in the United States. Research Report 94, Health Effects Institute, Cambridge, MA.

  • Samet J.M., S.L. Zeger, J.E. Kelsall, J. Xu & L.S. Kalkstein, 1997. In: Weather, Air Pollution and Mortality in Philadelphia 1973–1980; Particulate Air Pollution and Daily Mortality: Analyses of the Effects of Weather and Multiple Air Pollutants (The Phae 1.B. Report of the Particle Epidemiology Evaluation Project). Health Effects Institute, Cambridge, MA, pp. 1–30.

  • Schulz J., Hohenberg H., Pflücker F., Gärtner E., Will T., Pfeiffer S., Wepf R., Wendel V., Gers-Barlag H., Wittern K.-P. (2002). Distribution of sunscreens on skin. Adv. Drug Deliv. Rev. 54(Suppl. 1): S157–S163

    Article  CAS  Google Scholar 

  • Schwartz J. (2001). Air pollution and blood markers of cartdiovascular risk. Environ. Health Perspect. 109 (Suppl. 3):405–409

    CAS  Google Scholar 

  • Schwartz J. (1994). Air pollution and daily mortality: A review and meta analysis. Environ. Res. 64:36–52

    Article  CAS  Google Scholar 

  • Schwartz J., Dockery D.W. (1992). Increased mortality in Philadelphia associated with daily air pollution concentrations. Am. Rev. Respir. Dis. 145:600–604

    CAS  Google Scholar 

  • Schwartz J., Dockery D.W., Neas L.M. (1996). Is daily mortality associated specifically with fine particles. J. Air Waste Manage. Assoc. 46:927–939

    CAS  Google Scholar 

  • Scientific Committee on Cosmetic and Non-Food Products (SCCNFP), 2000. Opinion concerning Titanium Dioxide (Colipa n S75). SCCNP: Brussels, 2000 www.europa.eu.int/comm/health/ph_risk/committees/sccp/docshtml/sccp_out135_en.htm.

  • Seaton A., Soutar A., Crawford V., Elton R., McNerlan S., Cherrie J., Watt M., Agius R., Stout R. (1999). Particulate air pollution and the blood. Thorax 54:1027–1032

    Article  CAS  Google Scholar 

  • Seaton A., MacNee W., Donaldson K., Godden D. (1995). Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  CAS  Google Scholar 

  • Service R.F. (2004). Nanotechnology grows up. Science 304:1732–1734

    Article  CAS  Google Scholar 

  • Sexton K., Callahan M.A., Bryan E.F. (1995). Estimating exposure and dose to characterize health risks: The role of human tissue monitoring in exposure assessment. Environ. Health Perspect. 103(Suppl. 3):13–29

    Google Scholar 

  • Siegel J.E., Graham J.D., Stoto M.A. (1990). Allocating resources mong AIDS research strategies. Policy Sci. 23:1–23

    Article  Google Scholar 

  • Stone V., J. Shaw, D.M. Brown, W. MacNee, S.P. Faux & K.␣Donaldson, 1998. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol. In vitro 12(6), 649 (pp. 10).

  • Tan M.-H., Commens C.A., Burnett L., Snitch P.J. (1996). A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Aust. J. Dermatol. 37:185–187

    CAS  Google Scholar 

  • Tran C.L., Buchanan D., Cullen R.T., Searl A., Jones A.D., Donaldson K. (2000). Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 12(12):1113–1126

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency, 2004. An Examination of EPA Risk Assessment Principles and Practices. Office of the Science Advisor. EPA/100/B-04/001.

  • US Environmental Protection Agency, 1996. Air Quality Criteria for Particulate Matter, EPA/600/P-95/001cf.

  • Utell M.J., Frampton M.W. (2000). Acute health effects of ambient air pollution: The ultrafine particle hypothesis. J. Aerosol Med. 13(4):355–359

    Article  CAS  Google Scholar 

  • Vedal S. (1997). Ambient particles and health: Lines that divide. J. Air Waste Manage. Assoc. 475:551–581

    Google Scholar 

  • Vincent R., P. Kumarathasan, P. Goegan, S.G. Bjarnason, J.␣Guenette, D. Berube, I.Y. Adamson, S. Desjardins, R.T. Burnett, F.J. Miller & B. Battistini, 2001. Inhalation Toxicology of Urban Ambient Particulate Matter: Acute Cardiovascular Effects in Rats. Research Report 104, Health Effects Institute, Boston, MA.

  • Walker K.D., Catalano P., Hammitt J.K., Evans J.S. (2003) Use of expert judgment in exposure assessment: Part 2. Calibration of expert judgments about personal exposures to benzene. J. Expo. Anal. Environ. Epidemiol. 13:1–16

    Article  CAS  Google Scholar 

  • Walker K.D., Macintosh D., Evans J.S. (2001). Use of expert judgment in exposure assessment: Part I. Characterization of personal exposure to benzene. J. Expo. Anal. Environ. Epidemiol. 11:308– 322

    Article  CAS  Google Scholar 

  • Warheit D.B., Brock W.J., Lee K.P., Webb T.R., Reed K.L. (2005a). Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity. Toxicol. Sci. 88(2):514–524

    Article  CAS  Google Scholar 

  • Warheit D.B., T.R. Webb, K.L. Reed, C. Sayes, Y. Liu & V.L. Colvin, 2005b. In: Pulmonary Effects of Nanoscale Titania and Quartz Particles: Role of Particle Size and Surface Area; Proceedings of the 2nd International Symposium on Nanotechnology and Occupational Health, Minneapolis, MN, p. 28.

  • Watkinson W.P., Campen M.J., Costa D.L. (1998). Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicol. Sci. 41:209–216

    Article  CAS  Google Scholar 

  • Wichmann H.-E., C. Spix, T. Tuch, G. Wolke, A. Peters, J.␣Heinrich, W.G. Kreyling & G. Heyder, 2000. Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: Role of particle number and particle mass. Research Report 98, Health Effects Institute, Cambridge, MA.

  • Winkler R.L. (1986). Expert resolution. Manage. Sci. 32:298–306

    Google Scholar 

  • Winkler R.L. (1968). The consensus of subjective probability distributions. Manage. Sci. 15(2):B61–B75

    Google Scholar 

  • Wolff S.K., Hawkins N.C., Kennedy S.M., Graham J.D. (1990). Selecting experimental data for use in quantitative risk assessment: An expert judgment approach. Toxicol. Ind. Health 6:275–295

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurumurthy Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandlikar, M., Ramachandran, G., Maynard, A. et al. Health risk assessment for nanoparticles: A case for using expert judgment. J Nanopart Res 9, 137–156 (2007). https://doi.org/10.1007/s11051-006-9154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9154-x

Key words

Navigation