Advertisement

Journal of Nanoparticle Research

, Volume 9, Issue 2, pp 275–281 | Cite as

Preparation of nano-gypsum from anhydrite nanoparticles: Strongly increased Vickers hardness and formation of calcium sulfate nano-needles

  • Neil Osterwalder
  • Stefan Loher
  • Robert N. Grass
  • Tobias J. Brunner
  • Ludwig K. Limbach
  • Samuel C. Halim
  • Wendelin J. Stark
Original Paper

Abstract

The preparation of calcium sulfate by flame synthesis resulted in the continuous production of anhydrite nanoparticles of 20–50 nm size. After compaction and hardening by the addition of water, the anhydrite nanoparticles reacted to nano-gypsum which was confirmed by X-ray diffraction, diffuse reflectance IR spectroscopy and thermal analysis. Mechanical properties were investigated in terms of Vickers hardness and revealed an up to three times higher hardness of nano-gypsum if compared to conventional micron-sized construction material. The improved mechanical properties of nano-gypsum could in part be due to the presence of calcium sulfate nano-needles in the nano-gypsum as showed by electron microscopy.

Key words

Vickers hardness gypsum nanoparticles compaction construction material nano-needle nanocomposites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financed by the ETH Zurich. The authors would like to thank Dr. F. Krumeich for transmission electron microscopy and Prof. L. J. Gaukler for SEM measuring time.

References

  1. Arabi-Katbi O.I., Pratsinis S.E., Morrison P.W. (2002). In situ infrared measurements on TiO2 flames: Gas and particle concentrations. AIChE J. 48(1):59–68CrossRefGoogle Scholar
  2. Arikan M., Sobolev K. (2002). The optimization of gypsum-based composite material. Cem. Concr. Res. 32:1725–1728CrossRefGoogle Scholar
  3. Bushuew N., Maselnnikow B.M., Borisov V.M. (1983). Phase transformations in the dehydration of CaSO4 2· H2O. Russ. J. Inorg. Chem. 28:1404Google Scholar
  4. Coquard P., Boistelle R., Amathieu L., Barriac P. (1994). Hardness, elasticity modulus and flexion strength of dry set plaster. J. Mater. Sci. 29:4611–4617CrossRefGoogle Scholar
  5. Gleiter H. (1989). Nanocrystalline materials. Progr. Mater. Sci. 33(4):223–315CrossRefGoogle Scholar
  6. Grass R.N., Stark W.J. (2005). Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride. Chem. Commun. 14:1767–1769CrossRefGoogle Scholar
  7. Grass R.N., Tsantillis S., Pratsinis S.E. (2006). Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates. AIChE J. 52:1318–1325CrossRefGoogle Scholar
  8. Hajjouji A.E., Murat M. (1987). Strength development and hydrate formation rate, investigation on anhydrite binders. Cem. Concr. Res. 17:814–822CrossRefGoogle Scholar
  9. Hand R.J. (1997). Calcium sulphate hydrates: A review. Br. Ceram. Trans. 96(3):116–120Google Scholar
  10. Harris P.E., Hoyer S., Lindquist T.J., Stanford C.M. (2004). Alterations of surface hardness with gypsum die hardeners. J. Prost. Dent. 92(July):35–38CrossRefGoogle Scholar
  11. Huber M., W.J. Stark, S. Loher, M. Maciejewski, F. Krumeich & A. Baiker, 2005. Flame synthesis of calcium carbonate nanoparticles. Chem. Commun. 648–650Google Scholar
  12. Johannessen T., Jenson J.R., Mosleh M., Johansen J., Quaade U., Livbjerg H. (2004). Flame synthesis of nanoparticles – Applications in catalysis and product/process engineering. Chem. Eng. Res. & Design. 82(A11):1444–1452CrossRefGoogle Scholar
  13. Karni J., Karni E. (1995). Gypsum in construction: Origin and properties. Mater. Struct. 28:92–100CrossRefGoogle Scholar
  14. Kuang D.B., Xu A.W., Fang Y.P., Ou H.D., Liu H.Q. (2002). Preparation of inorganic salts (CaCO3, BaCO3, CaSO4) nanowires in the Triton X-100/cyclohexane/water reverse micelles. J. Crys. Growth. 244(3–4):379–383CrossRefGoogle Scholar
  15. Kumareson P., Devanarayanan S. (1992). Gypsum crystals grown in silica gel in the presence of citric acid as additive: A study on microhardness. J. Mater. Sci. Lett. 11:150–151CrossRefGoogle Scholar
  16. Luebke R.J., Chan K.C. (1985). Effect of microwave oven drying on surface hardness of dental gypsum products. J. Prosthet. Dent. 54(3):431–435CrossRefGoogle Scholar
  17. Madler L., Kammler H.K., Mueller R., Pratsinis S.E. (2002a). Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2):369–389CrossRefGoogle Scholar
  18. Madler L., Stark W.J., Pratsinis S.E. (2002b). Flame-made ceria nanoparticles. J. Mater. Res. 17(6):1356–1362Google Scholar
  19. Melo L.G.N., Nagata M.J.H., Bosco A.F., Ribeiro L.L.G., Leite C.M. (2005). Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. Clin. Oral Impl. Res. 16:683–691CrossRefGoogle Scholar
  20. Meyers M.A., Mishra A., Benson D.J. (2006). Mechanical properties of nanocrystalline materials. Progr. Mater. Sci. 51(4):427–556CrossRefGoogle Scholar
  21. Olsen D.W., 2004. Mineral Commodity Summaries. U.S. Geological Survey, pp. 76–77Google Scholar
  22. Papageorgiou A., Tzouvalas G., Tsimas S. (2005). Use of inorganic setting retarders in cement industry. Cem. Concr. Res. 27:183–189CrossRefGoogle Scholar
  23. Peters C.P., Hines J.L., Bachus K.N., Craig M.A., Bloebaum R.D. (2005). Biological effects of calcium sulfate as bone graft substitute in ovine metaphyseal defects. J. Biomed. Mater. Res. A. 76A(3):456–462Google Scholar
  24. Rees G.D., Evans-Gowing R., Hammond S.J., Robinson B.H. (1999). Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions. Langmuir 15(6):1993–2002CrossRefGoogle Scholar
  25. Sandler S.I. (1999). Chemical and Engineering Thermodynamics. John Wiley & Sons, New YorkGoogle Scholar
  26. Sievert T., Wolter W., Singh N.B. (2005). Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill. Cem. Concr. Res. 35:623–630CrossRefGoogle Scholar
  27. Song X.Y., Sun S.X., Fan W.L., Yu H.Y. (2003). Preparation of different morphologies of calcium sulfate in organic media. J. Mater. Chem. 13(7):1817–1821CrossRefGoogle Scholar
  28. Stark W.J., Baiker A., Pratsinis S.E. (2002). Nanoparticle opportunities: Pilot-scale flame synthesis of vanadia/titania catalysts. Part. Part. Syst. Char. 19(5):306–311CrossRefGoogle Scholar
  29. Stark W.J., L. Mädler & S.E. Pratsinis, 2004. Metal oxides prepared by flame pyrolysis, WO2004/005184 2004Google Scholar
  30. Stark W.J., Pratsinis S.E. (2002). Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2):103–108CrossRefGoogle Scholar
  31. Stark W.J., Wegner K., Pratsinis S.E., Baiker A. (2001). Flame aerosol synthesis of vanadia–titania nanoparticles: Structural and catalytic properties in the selective catalytic reduction of NO by NH3. J. Catal. 197(1):182–191CrossRefGoogle Scholar
  32. Xu C.H. (2005). Research and application of ceramic die materials. Rare Metal Mater. Eng. 34:262–265Google Scholar
  33. Zhan G.D., Mukherjee A.K. (2005). Processing and characterization of nanoceramic composites with interesting structural and functional properties. Rev. Adv. Mater. Sci. 10(3):185–196Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Neil Osterwalder
    • 1
  • Stefan Loher
    • 1
  • Robert N. Grass
    • 1
  • Tobias J. Brunner
    • 1
  • Ludwig K. Limbach
    • 1
  • Samuel C. Halim
    • 1
  • Wendelin J. Stark
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering, ETH ZurichZurichSwitzerland

Personalised recommendations