Journal of Nanoparticle Research

, Volume 9, Issue 5, pp 833–840 | Cite as

One-step synthesis of colloidal Mn3O4 and γ-Fe2O3 nanoparticles at room temperature

  • Shuijin Lei
  • Kaibin Tang
  • Zhen Fang
  • Jie Sheng


A facile room-temperature synthesis has been developed to prepare colloidal Mn3O4 and γ-Fe2O3 nanoparticles (5 to 25 nm) by an ultrasonic-assisted method in the absence of any additional nucleation and surfactant. The morphology of the as-prepared samples was observed by transmission electron microscopy. High-resolution transmission electron microscopy observations revealed that the as-synthesized nanoparticles were single crystals. The magnetic properties of the samples were investigated with a superconducting quantum interference device magnetometer. The possible formation process has been proposed.


one-step synthesis colloidal nanoparticles Mn3O4 γ-Fe2O3 ultrasonic-assisted method magnetic properties metal oxide nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support by the National Natural Science Foundation of China, the 973 Projects of China and the Program for New Century Excellent Talents in university (NCET) is gratefully acknowledged.


  1. Baldi M., Finocchio E., Milella F., Busca G. (1998). Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Appl. Catal. B: Environmental 16:43–51CrossRefGoogle Scholar
  2. Borovik-Romanov A.S., Orlova M.P. (1957). Magnetic properties of manganese oxides at temperatures from 20 to 300 K, Zhur. Eksptl. i Teoret. Fiz. (J. Exptl. Theoret. Phys.) 32:1255–1255Google Scholar
  3. Cao X., Prozorov R., Koltypin Yu., Kataby G., Felner I., Gedanken A. (1997) . J. Mater. Res. 12:402Google Scholar
  4. De Faria D.L.A., Venancio Silva S., De Oliveira M.T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28:873–878CrossRefGoogle Scholar
  5. Demazeau G. (1999). Solvothermal processes: a route to the stabilization of new materials. J. Mater. Chem. 9:15–18CrossRefGoogle Scholar
  6. Feldmann C., Jungk H.-O. (2001). Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40:359–362CrossRefGoogle Scholar
  7. Feltin N., Pileni M.P. (1997). New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir 13:3927–3933CrossRefGoogle Scholar
  8. Finocchio E., Busca G. (2001). Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3. Catal. Today 70:213–225CrossRefGoogle Scholar
  9. Grootendorst E.J., Verbeek Y., Ponce V. (1995). The role of the Mars and van Krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts. J. Catal. 157:706–712CrossRefGoogle Scholar
  10. Hyeon T., Lee S.S., Park J., Chung Y., Na H.B. (2001). Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123:12798–12801CrossRefGoogle Scholar
  11. Kijlstra W.S., Daamen J., Vandegraaf J.M., Vanderlinden B., Poels E.K., Bliek A. (1996). Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Appl. Catal. B: Environmental 7:337CrossRefGoogle Scholar
  12. Kim D.K., Zhang Y., Voit W., Rao K.V., Muhammed M. (2001). Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225:30–36CrossRefGoogle Scholar
  13. Kroll E., Winnik F.M., Ziolo R.F. (1996). In situ preparation of nanocrystalline γ-Fe2O3 in iron(II) cross-linked alginate gels. Chem. Mater. 8:1594–1596CrossRefGoogle Scholar
  14. Kumar R.V., Koltypin Yu, Xu X.N., Yeshurun Y., Gedanken A., Felner I. (2001) . J. Appl. Phys. 89:6324CrossRefGoogle Scholar
  15. Kumar V.G., Aurbuch D., Gedanken A. (2003). Ultrason. Sonochem. 10:17CrossRefGoogle Scholar
  16. Liu Y., Yang J.H., Yang W.S., Xie T.F., Bai Y.B., Li T.J. (2000). Influence of hydrothermal temperature on structures and photovoltaic properties of SnO2 nanoparticles. J. Nanoparticle Res. 2:309–313CrossRefGoogle Scholar
  17. Mendelovici E., Sagarzazu A. (1988). Thermal synthesis of hausmanite via manganese alkoxide. Thermochim. Acta 133:93CrossRefGoogle Scholar
  18. Murray C.B., Norris D.J., Bawendi M.G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715CrossRefGoogle Scholar
  19. Park S.-J., Kim S., Lee S., Khim Z.G., Char K., Hyeon T. (2000). Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122:8581–8582CrossRefGoogle Scholar
  20. Pekarek K.J., Jacob J.S., Mathiowitz E. (1994). Double-walled polymer microspheres for controlled drug release, Nature 367:258–260CrossRefGoogle Scholar
  21. Perez-Maqueda L.A., Wang L., Matijevic E. (1998). Nanosize indium hydroxide by peptization of colloidal precipitates. Langmuir 14:4397–4401CrossRefGoogle Scholar
  22. Pileni M.P. (1997). Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276CrossRefGoogle Scholar
  23. Pinna N., Grancharov S., Beato P., Bonville P., Antonietti M., Niederberger M. (2005). Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17:3044–3049CrossRefGoogle Scholar
  24. Prozorov T., Prozorov R., Koltypin Yu, Felner I., Gedanken A. (1998) . J. Phys. Chem. B 102:10165CrossRefGoogle Scholar
  25. Ramachandran R., Rashmi (2002). Preparation and characterization of manganous manganic oxide (Mn3O4). J. Mater. Sci.: Mater. Electron. 13:257–262CrossRefGoogle Scholar
  26. Rockenburger J., Scher E.C., Alivisatos A.P. (1999). A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 121:11595–11596CrossRefGoogle Scholar
  27. Roco M.C. (1999). Nanoparticles and nanotechnology research. J. Nanoparticles Res. 1:1–6CrossRefGoogle Scholar
  28. Sanchez L., Farcy J., Tirado J. (1996). Low-temperature mixed spinel oxides as lithium insertion compounds. J. Mater. Chem. 6:37CrossRefGoogle Scholar
  29. Sangregorio C., Galeotti M., Bardi U., Baglioni P. (1996). Synthesis of Cu3Au nanocluster alloy in reverse micelles. Langmuir 12:5800–5802CrossRefGoogle Scholar
  30. Sargi N., Vauthier C., Didierlaurent A., Thao T.X., Devissaguet J.-P., Couvreur P. (1994). Adsorption of allergen extracts onto colloidal particles. J. Colloid Interface Sci. 166:294–301CrossRefGoogle Scholar
  31. Seo W.S., Jo H.H., Lee K., Kim B., Oh S.J., Park J.T. (2004). Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 43:1115–1117CrossRefGoogle Scholar
  32. Shafi K.V.P.M., Ulman A., Yan X.Z., Yang N.L., Estournes C., White H., Rafailovich M. (2001). Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17:5093–5097CrossRefGoogle Scholar
  33. Shebanova O.N., Lazor P. (2003). Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174:424–430CrossRefGoogle Scholar
  34. Shomate C.H. (1943). Heats of formation of manganomanganic oxide and manganese dioxide. J. Am. Chem. Soc. 65:786Google Scholar
  35. Southard J.C., Moore G.E. (1942). High-temperature heat content of Mn3O4, MnSiO3 and Mn3C. J. Am. Chem. Soc. 64:1769–1770CrossRefGoogle Scholar
  36. Stobbe E.R., De Boer B.A., Geus J.W. (1999). The reduction and oxidation behaviour of manganese oxides. Catal. Today 47:161–176CrossRefGoogle Scholar
  37. Stouwdam J.W., van Veggel F.C.J.M. (2002). Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2:733–737CrossRefGoogle Scholar
  38. Sun S.H., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G.X. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 126:273–279CrossRefGoogle Scholar
  39. Suslick K.S. (1988). Ultrasound: Its Chemical, Physical and Biological Effect. Weinheim, Germany, VCHGoogle Scholar
  40. Suslick K.S., Cichowlas A.A., Grinstaff M.W. (1991) . Nature 353:414CrossRefGoogle Scholar
  41. Takatori K., Tani T., Watanabe N., Kamiya N. (1999). Preparation and characterization of nano-structured ceramic powders synthesized by emulsion combustion method. J. Nanoparticles Res. 1:197–204CrossRefGoogle Scholar
  42. Tejada J., Zhang X.X., Balcells LI. (1993). Nonthermal viscosity in magnets: Quantum tunneling of the magnetization. J. Appl. Phys. 73:6709CrossRefGoogle Scholar
  43. Ursu I., Alexandrescu R., Mihailescu I.N., Morjan I., Jianu V., Popescu C. (1986). Kinetic evolution during the laser/thermal preparation of Mn3O4 from MnCO3. J. Phys. B 19:L825CrossRefGoogle Scholar
  44. Yin M., O’Brien S. (2003). Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125:10180–10181CrossRefGoogle Scholar
  45. Yu H., Gibbons P.C., Kelton K.F., Buhro W.E. (2001). Heterogeneous seeded growth: A potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123:9198–9199CrossRefGoogle Scholar
  46. Yu J.C., Xu A., Zhang L., Song R., Wu L. (2004). Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. J. Phys. Chem. B 108:64–70CrossRefGoogle Scholar
  47. Zhang L., Papaefthymiou G.C., Ying J.Y. (2001). Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporous aluminosilicate matrices. J. Phys. Chem. B 105:7414–7423CrossRefGoogle Scholar
  48. Zhang W.X., Wang C., Zhang X.M., Xie Y., Qian Y.T. (1999). Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method. Solid State Ionics 117:331–335CrossRefGoogle Scholar
  49. Zhang Y.C., Qiao T., Hu X.Y. (2004). Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires. J. Solid State Chem. 177:4093–4097CrossRefGoogle Scholar
  50. Zwinkels M.F.M., Jaras S.G., Menon P.G., Griffin T.A. (1993). Catalytic materials for high-temperature combustion. Catal. Rev. Sci. Eng. 35:319–358Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Shuijin Lei
    • 1
    • 2
  • Kaibin Tang
    • 2
  • Zhen Fang
    • 2
  • Jie Sheng
    • 2
  1. 1.School of Materials Science and EngineeringNanchang UniversityNanchangP. R. China
  2. 2.Nanomaterial and Nanochemistry, Hefei National Laboratory for Physical Sciences at Micro-scaleUniversity of Science and Technology of ChinaHefeiP. R. China

Personalised recommendations