Journal of Nanoparticle Research

, Volume 9, Issue 4, pp 639–645 | Cite as

Surface-modified Pd nanoparticles as a superior additive for lubrication

  • L. Kolodziejczyk
  • D. Martínez-Martínez
  • T. C. Rojas
  • A. Fernández
  • J. C. Sánchez-López
Technology and Applications


The tribological performance of lubricants is favourably altered by adding small amounts of nanoparticles which provide reduced wear and low friction. However, one of the main difficulties of using nanoparticles as additives is their dispersion or dissolution in lubricant oils, typically of hydrocarbon nature. With the surface modification of nanoparticles through long chain high molecular weight hydrocarbons, stable dispersions in lubricant oils become feasible. Here we show that using surface-modified Pd nanoparticles (2 nm size) with tetraalkylammonium chains, stable dispersions in lubricant oils become feasible with excellent tribological properties (friction 0.07, wear resistance 10−10 mm3/Nm). Electrical contact measurements were also used to monitor the conductivity of the contact during sliding. The use of these nanoparticles made decrease the electrical resistance of the contact a percentage of 97 to 99.5% in comparison with the initial value measured for the base oil alone. To understand these phenomena the contact surfaces and Pd nanoparticles were studied after friction by scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM), respectively. The outstanding performance is attributed to a combination of factors as metallic character of palladium, nanometric size, and replenishment of Pd nanoparticles onto the contact forming a transfer layer. This discovery opens new perspectives of using metallic nanoparticles as lubricant additives for small contacts and connectors applications.

Key words

nanoparticles friction tribology additive antiwear load-bearing TEM electrical contacts colloids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support by the Spanish MEC, Project MAT2004-01052 is acknowledged. We also thank I. Rosa, T. Kolodziejczyk and M.C. Jiménez de Haro for technical support.


  1. Antler M. 1999. Electrical Contact (ed. Slade P.G.). Marcel Dekker, New York, pp. 179–202.Google Scholar
  2. Baker I.L., Singleterry C.R., Solomon E.M. (1954) Neutral and basic sulfonates. Ind. Eng. Chem. 46:1035–1942CrossRefGoogle Scholar
  3. Bakunin V.N., Suslov A.Y., Kuzmina G.N., Parenago O.P. (2004). Synthesis and application of inorganic nanoparticles as lubricant components - a review. J. Nano. Res. 6(2–3):273–284CrossRefGoogle Scholar
  4. Chhowalla M., Amaratunga G.A.J. (2000). Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407:164–167CrossRefGoogle Scholar
  5. Chinas-Castillo F., Spikes H.A. (2000). Film formation by colloidal overbased detergents in lubricated contacts. Tribol. Trans. 43(3):357–366Google Scholar
  6. Cohen S.R., Y. Feldman, H. Cohen & R. Tenne, 1999. Nanotribology of novel metal dichalcogenides. Appl. Surf. Sci. 144–145, 603–607.Google Scholar
  7. Donnet C., Martin J.M., Le Mogne T., Belin M. (1996). Super-low friction of MoS2 coatings in various environments. Tribol. Int. 29(2):123–128CrossRefGoogle Scholar
  8. Fendler J.H., Meldrum F.C. (1995). The colloid-chemical approach to nanostructured materials. Adv. Mater. 7(7):607–632CrossRefGoogle Scholar
  9. Greenberg R., Halperin G., Etsion I., Tenne R. (2004). The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17(2):179–186CrossRefGoogle Scholar
  10. Jayaram G., Marks L.D., Hilton M.R. (1995). Nanostructure of Au-20%Pd layers in MoS2 multilayer solid lubricant films. Surf. Coat. Technol. 77(1–3):393–399CrossRefGoogle Scholar
  11. Krastev I., N. Petkova & A. Zielonka, 2002. Properties of silver-antimony alloys electrodeposited from ferrocyanide-thiocyanate electrolytes. J. Appl. Electrochem. 32(7), 811–818Google Scholar
  12. Hannel S., Fouvry S., Kapsa Ph., Vincent L. (2001). The fretting sliding transition as a criterion for electrical contact performance. Wear 249:761–770CrossRefGoogle Scholar
  13. Li H., Zhang S.M., Wu Z.S., Zhang Z.J., Dang H.X. (2006). Ag nanoparticles: preparation in functional ionic liquid and friction properties. Chinese J. Inorg. Chem. 22(1):65–68Google Scholar
  14. Liu W., Zhang Z., Chen S., Xue Q. (2000). The research and application of colloids as lubricants. J. Disp. Sci. Technol. 21(4):469–490Google Scholar
  15. Qiu S.Q., Zhou Z.R., Dong J.X., Chen G.X. (2001). Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J. Tribol. Trans. ASME 123(3):441–443CrossRefGoogle Scholar
  16. Rapoport L., Billik Y., Feldman Y., Homoyonfer M., Cohen S.R., Tenne R. (1997). Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387:791–793CrossRefGoogle Scholar
  17. Rapoport L., Fleischer N., Tenne R. (2003). Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv. Mater. 15(7–8):651–655CrossRefGoogle Scholar
  18. Rapoport L., V. Leshchinsky, Yu. Volovik, M. Lvovsky, O. Nepomnyashchy, Y. Feldman, R. Popovitz-Biro & R. Tenne, 2003. Modification of contact surfaces by fullerene-like solid lubricant nanoparticles. Surf. Coat. Technol. 163–164, 405–412.Google Scholar
  19. Reetz M.T., Maase M. (1999). Redox-controlled size-selective fabrication of nanostructured transition metal colloids. Adv. Mater. 11(9):773–777CrossRefGoogle Scholar
  20. Sánchez-López J.C., Belin M., Donnet C., Quirós C., Elizalde E. (2002). Friction mechanisms of amorphous carbon nitride films under variable environments: a triboscopic study. Surf. Coat. Technol. 160:138–144CrossRefGoogle Scholar
  21. Sánchez-López J.C., A. Erdemir, C. Donnet & T.C. Rojas, 2003. Friction-induced structural transformations of diamondlike carbon coatings under various atmospheres. Surf. Coat. Technol. 163–164, 444–450.Google Scholar
  22. Sánchez-López J.C., & L. Kolodziejczyk, D., Martínez-Martínez, A., Fernández T.C., Rojas, R., Litrán, 2005. PCT application Nr. PCT/ES2006/070045Google Scholar
  23. Subramonian B., K. Kato, K. Adachi & B. Basu 2005. Experimental evaluation of friction and wear properties of solid lubricant coatings on SUS440C steel in liquid nitrogen. Tribol. Lett. 20 (3–4), 263–272Google Scholar
  24. Zhang Z., Xue Q., Zhang J. (1997). Synthesis, structure and lubricating properties of dialkyldithiophosphate-modified Mo-S compound nanoclusters. Wear 209:8–12CrossRefGoogle Scholar
  25. Zhao Y., Zhang Z., Dang H. (2004). Fabrication and tribological properties of Pb nanoparticles. J. Nano. Res. 6:47–51CrossRefGoogle Scholar
  26. Zhou J., Wu Z., Zhang Z., Liu W., Xue Q. (2000). Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol. Lett. 8(4):213–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • L. Kolodziejczyk
    • 1
  • D. Martínez-Martínez
    • 1
  • T. C. Rojas
    • 1
  • A. Fernández
    • 1
  • J. C. Sánchez-López
    • 1
  1. 1.Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-USSevillaSpain

Personalised recommendations