Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 1003–1016 | Cite as

Phases and phase transformations in nanocrystalline ZrO2

  • D. Vollath
  • F. D. Fischer
  • M. Hagelstein
  • D. V. Szabó


Starting from results from He-pycnometry, electron diffraction, Extended X-ray Absorption Fine Structure Spectroscopy and Perturbed Angular Correlation Spectroscopy the phase transformations and structures of zirconia are described. From a comparison of these results with those obtained on other oxide nanoparticles it is concluded that the phases and structure of nanoparticles are different compared to those of coarse-grained material. The difference of the transformation temperature of bare and coated nanoparticles was used to estimate enthalpy and entropy of the tetragonal → monoclinic transformation for nanoparticulate zirconia. By comparison with results obtained from other nanocrystalline oxides, the following rules were derived: Provided the particles are sufficiently small, particles made of materials showing phase transitions crystallize in the high temperature structure. However, compared to coarse-grained materials of the same structure, the density of nanoparticles is reduced. A first estimation limits this phenomenon to particle sizes well below 10 nm. Those nanoparticles follow the generalized phase diagram postulated by Tammann.


chemical synthesis nanoparticles phase transformations order-disorder phenomena perturbed angular correlation EXAFS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



At the Forschungszentrum Karlsruhe this work was partly supported by Deutsche Forschungsgemeinschaft (DFG) under grant number VO861/1-1, and VO861/1-2. The EXAFS measurements were performed at the European Synchrotron Radiation Facility, Beamline BM29, Grenoble, France. Provision of beam time and the support of C. Ferrero and M. Borowski are gratefully acknowledged.


  1. Antonioli G., Lottici P.P., Manzini I., Gnappi G., Montenero A., Paloschi F., Parent P. (1994). An EXAFS study of the local structure around Zr atoms in Y2O3-stabilized ZrO2 by the sol-gel method. J. Non-Cryst. Solids 177:179–186CrossRefGoogle Scholar
  2. Asmani M., Kermel C., Leriche A., Ourak M. (2001). Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J. Europ. Ceram. Soc. 21:1081–1086CrossRefGoogle Scholar
  3. Ayyub P., Multani M., Barma M., Palkar V.R., Vijayaraghavan R. (1988). Size induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. J. Phys. C, Solid State Phys. 21:2229–2245CrossRefGoogle Scholar
  4. Ayyub P., Palkar V.R., Chattopadhay S., Multani M. (1995). Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51:6135–6138CrossRefGoogle Scholar
  5. Böhm H.J., Fischer F.D., Reisner G. (1997). Evaluation of elastic strain energy of spheroidal inclusions with uniform volumetric and shear eigenstrains. Scripta Mater. 36:1053–1059CrossRefGoogle Scholar
  6. Catchen G.L. (1995). Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique. Mat. Res. Soc. Bull. 20:37–46Google Scholar
  7. Chang J., Johnson E. (2005). Surface and bulk melting of small metal clusters. Phil. Mag. 85:3617–3627CrossRefGoogle Scholar
  8. Dorey R.A., Yeomans J.A., Smith P.A. (2002). Effect of pore clustering on the mechanical properties of ceramics. J. Europ. Ceram. Soc. 22:403–409CrossRefGoogle Scholar
  9. Fischer F.D., Oberaigner E.R. (2000). Deformation, stress state, and thermodynamic force for a transforming spherical inclusion in an elastic–plastic material. ASME J. Appl. Mech. 67:793–796CrossRefGoogle Scholar
  10. Fischer F.D., Reisner G. (1998). A criterion for the martensitic transformation of a microregion in an elastic–plastic material. Acta Mater. 46:2095–2102CrossRefGoogle Scholar
  11. Fischer F.D., Böhm H.J. (2005). On the role of the transformation eigenstrain in the growth or shrinkage of spheroidal isotropic precipitations. Acta Mater. 53:367–374CrossRefGoogle Scholar
  12. Forker M., Schmidberger J., Szabó D.V., Vollath D. (2000). Perturbed-angular-correlation study of phase transformations in nanoscaled Al2O3-coated and noncoated ZrO2 particles synthesized in a microwave plasma. Phys. Rev. B 61:1014–1025CrossRefGoogle Scholar
  13. Forker M., Brossmann U., Würschum R. (1998). Perturbed-angular-correlation study of electric quadrupole interactions in nanocrystalline ZrO2. Phys. Rev. B 57:5177–5181CrossRefGoogle Scholar
  14. Frauenfelder H., & R.M. Steffen, 1974. In: Siegbahn K. ed. Alpha, Beta, and Gamma Spectroscopy. North-Holland, AmsterdamGoogle Scholar
  15. Garvie R.C. (1978). Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82:218–224CrossRefGoogle Scholar
  16. Greaves C. (1983). A powder neutron diffraction investigation of vacancy ordering and covalence in γ-Fe2O3. J. Solid State Chem. 49:325–333CrossRefGoogle Scholar
  17. Hagelstein M., Moser H.O., Vollath D., Ferrero C., Borowski M. (2001). XAS investigation of Al2O3-coated nano-composite ZrO2. J. Synchrotron Radiation 8:522–524CrossRefGoogle Scholar
  18. Hemley R.J., Jephcoat A.P., Mao H.K., Ming L.C., Manghnani M.H. (1988). Pressure-induced amorphization of crystalline silica. Nature 334:52–54CrossRefGoogle Scholar
  19. Inorganic Crystal Structure Database (ICSD) entry No. 4275Google Scholar
  20. Inorganic Crystal Structure Database (ICSD) entry No. 6814Google Scholar
  21. JCPDS #17-0923Google Scholar
  22. JCPDS #37-1484Google Scholar
  23. Kao A.S., Gorman G.I. (1990). Modification of zirconia film properties by low-energy ion bombardment during reactive ion-beam deposition. J. Appl. Phys. 67:3826–3834CrossRefGoogle Scholar
  24. Kingery W.D., Bowen H.K., Uhlmann D.R. (1976). Introduction to Ceramics, John Wiley, Sons, New YorkGoogle Scholar
  25. Koningsberger D.C. & R. Prins eds., 1987. X-Ray Absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. John Wiley, Sons, New York, Vol. 92 in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its ApplicationsGoogle Scholar
  26. Livey D., Murray P. (1956). Surface energies of solid oxides and carbides. J. Am. Ceram. Soc. 39:363–372CrossRefGoogle Scholar
  27. Massalski T.B., 1990. Binary Alloy Phase Diagrams, Vol. 3. ASM-International, Metals Park OhioGoogle Scholar
  28. Mayo M.J., Suresh A., Porter W.D. (2003). Thermodynamics for nanosystems: grain and particle-size dependent phase diagrams. Rev. Adv. Mater. Sci. 5:100–109Google Scholar
  29. McHale J.M., Auroux A., Navrotsky A. (1997). Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Sci. Mag. 277:788–791Google Scholar
  30. Mishima O., Calvert L.D., Whally E. (1985). An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314:76–78CrossRefGoogle Scholar
  31. Moulzolf S.C., Yu Y., Frankel D.J., Lad R.J. (1997). Properties of ZrO2 films on sapphire prepared by zyclotron resonance sputtering. J. Vac. Sci. Technol. A15:1211–1215CrossRefGoogle Scholar
  32. Navrotsky A. (2003). Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem. Trans. 4:34–37CrossRefGoogle Scholar
  33. Ondracek G., 1994. Werkstoffkunde: Leitfaden für Studium und Praxis, Expert-Verlag, Ehningen bei BöblingenGoogle Scholar
  34. Ostwald W. (1897). Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22:289–302Google Scholar
  35. Pellegrin, Hagelstein E.M., Doyle S., Moser H.O., Fuchs J., Vollath D., Schuppler S., James M.A., Saxena S.S., Niesen L., Rogojanu O., Sawatzky G.A., Ferrero C., Borowski M., Tjernberg O., Brookes N.B. (1999). Characterization of nanocrystalline γ-Fe2O3 with synchrotron radiation techniques. Phys. Stat. Sol. B 215:797–801Google Scholar
  36. Rastogi S., Höhne G.W.H., Keller A. (1999). Unusual pressure-induced phase behavior in crystalline poly(4-methylpentene-1); calorimetric and spectroscopic results and further implications. Macromolecules 32:8897–8909Google Scholar
  37. Rastogi S., Newman M., Keller A. (1993). Unusual pressure-induced phase behavior in crystalline poly-4-methyl-pentene-1. J. Polym. Sci. B 31:125–139Google Scholar
  38. Sakai H. (1996). Surface-induced melting of small particles. Surf. Sci. 351:285–291CrossRefGoogle Scholar
  39. Schatz G., Weidinger A. (1996). Nuclear Condensed Matter Physics: Nuclear Methods and Applications, John Wiley Sons, New YorKGoogle Scholar
  40. Schlabach S., D. V. Szabó & D. Vollath, 2006. Structure and grain growth of TiO2 nanoparticles investigated by electron- and x-ray-diffraction and 181Ta perturbed angular correlations. J. Appl. Phys. (in the print)Google Scholar
  41. Schupper N. & N. M. Shnerb, 2005. Condensed Matter. cond-mat/0403674.Google Scholar
  42. Srdic V.V., Winterer M., Miehe G., Hahn H. (1999) Different zirconia-alumina nanopowders by modifications of chemical vapor synthesis. NanoStruct. Mater. 12: 95–100CrossRefGoogle Scholar
  43. Stillinger F.H., Debenetti G.P. (2003) Phase transitions, Kauzmann curves, and inverse melting. Biophys. Chem. 105: 211–220CrossRefGoogle Scholar
  44. Suresh A., Mayo M.J., Porter W.D. (2003) Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders. J. Mater. Res. 18: 2912–2921CrossRefGoogle Scholar
  45. Tammann G. (1903) Kristallisieren und Schmelzen. Ein Beitrag zur Lehre der Änderungen des Aggregatzustandes, Johann Ambrosius Barth, LeipzigGoogle Scholar
  46. Ushakov S.V., Brown C.E., Navrotsky A. (2004). Effect of La and Y on crystallization temperatures of hafnia and zirconia. J. Mater. Res. 19:693–696CrossRefGoogle Scholar
  47. Vollath D., Szabó D.V. (1994). Nanocoated particles: A special type of ceramic powder. NanoStruct. Mater. 4:927–938CrossRefGoogle Scholar
  48. Vollath D., Sickafus K.E. (1992). Synthesis of nanosized ceramic oxide powders by microwave plasma reactions. NanoStruct. Mater. 1:427–437CrossRefGoogle Scholar
  49. Vollath D., Forker M., Hagelstein M., Szabó D.V. (2001). Structural disorder in the anion lattice of nanocrystalline zirconia and hafnia particles. Mat. Res. Soc. Symp. Proc. 634:B7.7.1–8.2Google Scholar
  50. Volmer M. (1983). Zur Kinetik der Phasenbildung und Elektrodenreaktion. Harri Deutsch, Frankfurt/MGoogle Scholar
  51. Wang C.M., Azad S., Thevuthasan S., Shuttanandan V., McCready D.E., Peden C.H.F. (2004a). Distortion of the oxygen sublattice in pure cubic-ZrO2. J. Mater Res. 19:1315–1319CrossRefGoogle Scholar
  52. Wang Y.S., He C., Hockey B.J., Lacey P.I., Hsu S.M. (1995). Wear transitions in monolithic alumina and zirconia-alumina composites. Wear 181–183:156–164Google Scholar
  53. Zhang Y.L., Jin X.J., Hsu T.Y. (2003). Thermodynamic calculation of Ms in ZrO2–CeO2–Y2O3 system. J. Europ. Ceram. Soc. 23:685–690CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. Vollath
    • 1
  • F. D. Fischer
    • 2
  • M. Hagelstein
    • 3
  • D. V. Szabó
    • 4
  1. 1.NanoConsultingStutenseeGermany
  2. 2.Montanuniversität Leoben, Institute of␣MechanicsErich Schmid Institute of Materials Science, Austrian Academy of SciencesLeobenAustria
  3. 3.Forschungszentrum KarlsruheInstitut für SynchrotronstrahlungKarlsruheGermany
  4. 4.Forschungszentrum KarslruheInstitut für Materialforschung IIIKarslruheGermany

Personalised recommendations