Journal of Nanoparticle Research

, Volume 8, Issue 5, pp 615–625 | Cite as

Effect of Thermal Treatment on the Structure of Multi-walled Carbon Nanotubes

  • K. Behler
  • S. Osswald
  • H. Ye
  • S. Dimovski
  • Y. Gogotsi


The effects of vacuum annealing and oxidation in air on the structure of multi-walled carbon nanotubes (MWCNTs) produced by a large-scale catalytic chemical vapor deposition (CCVD) process are studied using Raman spectroscopy and transmission electron microscopy (TEM). A detailed Raman spectroscopic study of as-produced nanotubes has also been conducted. While oxidation in air up to 400°C removes disordered carbon, defects in tube walls are produced at higher temperatures. TEM reveals that MWCNTs annealed at 1,800°C and above become more ordered than as-received tubes, while the tubes annealed at 2,000°C exhibit polygonalization, mass transfer and over growth. The change in structure is observable by the separation of the Raman G and D′ peaks, a lower R-value (I D/I G ratio), and an increase in the intensity of the second order peaks. Using wavelengths from the deep ultraviolet (UV) range (5.08 eV) extending into the visible near infrared (IR) (1.59 eV), the Raman spectra of MWCNTs reveal a dependence of the D-band position proportional to the excitation energy of the incident laser energies.


multi-walled carbon nanotube Raman spectroscopy transmission electron microscopy annealing oxidation polygonalization heat transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Dr. Mickael Havel for helpful discussions and Arkema, France, for supplying nanotubes. The vacuum furnace for annealing experiments was donated by Solar Atmospheres. The Renishaw 1000/2000 Raman spectrometer was purchased with an NSF Grant (DMR-0116645) and is operated by the centralized Materials Characterization Facility of the A.J. Drexel Nanotechnology Institute. The authors are also grateful to LRSM at the University of Pennsylvania for using their TEM facilities. K.␣Behler was supported by an NSF-IGERT Fellowship (Grant DGE-0221664) and the Arkema PhD Fellowship. S. Osswald is supported by Arkema PhD Fellowship.


  1. Ago H., Nakamura K., Imamura S. and Tsuji M. (2004). Growth of double-walled carbon nanotubes with diameter controlled iron oxide nanoparticles supported on MgO. Chem. Phys. Lett. 391: 308–313CrossRefGoogle Scholar
  2. Bacsa W.S., Ugarte D., Chatelain A. and de Heer W.A. (1994). High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes. Phys. Rev. B 50(20): 473–476CrossRefGoogle Scholar
  3. Banhart F. (1999). Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62(8): 1181–1221CrossRefGoogle Scholar
  4. Brown S.D.M., Jorio A., Dresselhaus M.S. and Dresselhaus G. (2001). Observations of the D-band feature in the Raman spectra of carbon nanotubes. Phys. Rev. B 64(7): 073403/1–4CrossRefGoogle Scholar
  5. Chiashi S., Murakami Y., Miyauchi Y., and Maruyama S. (2004). Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem. Phys. Lett. 386: 89–94CrossRefGoogle Scholar
  6. Corrias M., Caussat B., Ayral A., Durand J., Kihn Y., Kalck P. and Serp P. (2003). Carbon nanotubes produced by fluidized bed catalytic CVD: First approach of the process. Chem. Eng. Sci. 58(19): 4475–4482CrossRefGoogle Scholar
  7. Couteau E., Hernadi K., Seo J.W., Thien-Nga L., Miko C., Gaal R. and Forro L. (2003). CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378: 9–17CrossRefGoogle Scholar
  8. Dresselhaus M.S., 2001. Carbons: Bonding. In: Jurgen Buschow K.H., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., and Mahajan S. eds. Encyclopedia of Materials: Science and Technology. Elsevier, pp. 995–999Google Scholar
  9. Dresselhaus M.S., Pimenta M.A., Eklund P.C. and Dresselhaus M.S. (2000). Raman scattering in fullerenes and related carbon-based materials. In: Weber W.H. and Merlin R. (eds) Raman Scattering in Materials Science. Springer-Verlag, New York, pp. 314–364Google Scholar
  10. Eklund P.C., Holden J.M. and Jishi R.A. (1995). Vibrational modes of carbon nanotubes: Spectroscopy and theory. Carbon 33(7):959–972CrossRefGoogle Scholar
  11. Endo M., Lee B.J., Kim Y.A., Muramatsu H., Yanagisawa T., Hayashi T., Terrones M. and Dresselhaus M.S. (2003). Transitional behaviour in the transformation from active end planes to stable loops caused by annealing. New J. Phys. 5: 121.1–121.9CrossRefGoogle Scholar
  12. Gogotsi Y., Libera J.A., Kalashnikov N. and Yoshimura M. (2000). Graphite polyhedral crystals. Science 290: 317–320CrossRefGoogle Scholar
  13. Hiura H., Ebbesen T.W. and Tanigaki K. (1993). Raman studies of carbon nanotubes. Chem. Phys. Lett. 202(6): 509–512CrossRefGoogle Scholar
  14. Hulman M., Kuzmany H., Dubay O., Kresse G., Li L., Tang Z.K., Knoll P. and Kaindl R. (2004). Raman spectroscopy of single wall carbon nanotubes grown in zeolite crystals. Carbon 42: 1071–1075CrossRefGoogle Scholar
  15. Iijima S. (1991). Helical microtubules of graphitic carbon. Nature 354: 56–58CrossRefGoogle Scholar
  16. Jorio A., Saito R., Dresselhaus G. and Dresselhaus M.S. (2004). Determination of nanotubes properties by Raman spectroscopy. Philos. Transac. Royal Soc. 362(1824): 2311–2336CrossRefGoogle Scholar
  17. Kastner J., Pichler T., Kuzmany H., Curran S., Blau W., Weldon D.N., Delamesiere M., Draper S. and Zandbergen H. (1994). Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem. Phys. Lett. 221(1–2):53–58CrossRefGoogle Scholar
  18. Kim Y.A., Hayashi T., Osawa K., Dresselhaus M.S. and Endo M. (2003). Annealing effect on disordered multi-walled carbon nanotubes. Chem. Phys. Lett. 380: 319–324CrossRefGoogle Scholar
  19. Kobayashi Y., Nakashima H., Takagi D. and Homma Y. (2004). “CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst. Thin Solid Films 464–465: 286–289CrossRefGoogle Scholar
  20. Kosaka M., Ebbesen T.W., Hiura H. and Tanigaki K. (1995). Annealing effect on carbon nanotubes. An ESR study. Chem. Phys. Lett. 233: 47–51CrossRefGoogle Scholar
  21. Lee C.J., Lyu S.C., Cho Y.R. and Lee J.H. (2001). Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 341: 245–249CrossRefGoogle Scholar
  22. Lee C.J., Park J. and Yu J.A. (2002). Catalyst effects on carbon nanotubes synthesized by thermal chemical vapor deposition. Chem. Phys. Lett. 360: 250–255CrossRefGoogle Scholar
  23. Lefrant S. (2002). Raman and SERS studies of carbon nanotube systems. Curr. Appl. Phys. 2: 479–482CrossRefGoogle Scholar
  24. Lefrant S., Buisson J.P., Schreiber J., Chauvet O., Baibarac M. and Baltog I. (2003). Study of interactions in carbon systems using Raman and SERS spectroscopy. Syn. Metals 139: 783–785CrossRefGoogle Scholar
  25. Naguib N., Ye H., Gogotsi Y., Yazicioglu A.G., Megaridis C.M. and Yoshimura M. (2004). Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 4(11): 2237–2243CrossRefGoogle Scholar
  26. Osswald S., Flahaut E. and Gogotsi Y. (2006). In situ Raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes. Chem. Mater. 18(6): 1525–1533CrossRefGoogle Scholar
  27. Osswald S., Flahaut E., Ye H., and Gogotsi Y. (2005). Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem. Phys. Lett. 402: 422–427CrossRefGoogle Scholar
  28. Pimenta M.A., Jorio A., Brown S.D.M., Souza Filho A.G., Dresselhaus G., Hafner J.H., Lieber C.M., Saito R., and Dresselhaus M.S. (2001). Diameter dependence of the Raman D-band in an isolated single-wall carbon nanotube. Phys. Rev. B 64(4): 041401/1–4CrossRefGoogle Scholar
  29. Rakov E.G., 2006. Chemistry of carbon nanotubes. In: Gogotsi Y. ed., Nanomaterials Handbook. CRC press, pp. 105–176Google Scholar
  30. Rao A.M., Jorio A., Pimenta M.A., Dantas M.S.S., Saito R., Dresselhaus G. and Dresselhaus M.S. (2000). Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 84(8): 1820–1823CrossRefGoogle Scholar
  31. Rotkin S., and Gogotsi Y. (2002). Analysis of non-planar graphitic structures: From arched edge planes of graphite crystals to nanotubes. Mat. Res. Innovat. 5: 191–200CrossRefGoogle Scholar
  32. Speck J.S., Endo M. and Dresselhaus M.S. (1989). Structure and intercalation of thin benzene derived carbon fibers. J. Crystal Growth 94(4): 834–848CrossRefGoogle Scholar
  33. Thomsen C. & S. Reich, 2000. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85(24), 5215–5217Google Scholar
  34. Thomsen C., Reich S. and Maultzsch J. (2004). Resonant Raman spectroscopy of nanotubes. Philos. Transac. Royal Soc. London A 362: 2337–2359CrossRefGoogle Scholar
  35. Wang Y.F., Alsmeyer D.C., and McCreery R.L. (1990). Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 2: 557–563CrossRefGoogle Scholar
  36. Wang Y.F., Cao X.W., Hu S.F., Liu Y.Y., and Lan G.X. (2001). Graphical method for assigning Raman peaks of radial breathing modes of single-walled carbon nanotubes. Chem. Phys. Lett. 336(1–2):47–52Google Scholar
  37. Wiltshire J.G., Khlobystov A.N., Li L.J. and Lyapin S.G. (2004). Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chem. Phys. Lett. 386(4–6): 239–243CrossRefGoogle Scholar
  38. Ye H., Naguib N. and Gogotsi Y. (2004). TEM study of water in carbon nanotubes. JEOL News 39(2): 1–7Google Scholar
  39. Yushin G.N., S. Osswald, V.I. Padalko, G.P. Bogatyreva & Y. Gogotsi, 2005. Effect of sintering on structure of nanodiamond. Diam. Relat. Mater. 14(10), 1721–1729Google Scholar
  40. Zhang H., Lin G., Zhou Z., Dong X. and Chen T. (2002). Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon 40: 2429–2436CrossRefGoogle Scholar
  41. Zhou W., Ooi Y.H., Russo R., Papanek P., Luzzi D.E., Fischer J.E., Bronikowski M.J., Willis P.A., and Smalley R.E. (2001). Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem. Phys. Lett. 350: 6–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • K. Behler
    • 1
  • S. Osswald
    • 1
  • H. Ye
    • 1
  • S. Dimovski
    • 1
  • Y. Gogotsi
    • 1
  1. 1.Department of Materials Science and Engineering, and A.J. Drexel Nanotechnology InstituteDrexel UniversityPhiladelphiaUSA

Personalised recommendations