Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 1065–1069 | Cite as

Facile synthesis and optical property of SnO2 flower-like architectures

  • Qingrui Zhao
  • Zhengquan Li
  • Changzheng Wu
  • Xue Bai
  • Yi Xie
Brief communication

Abstract

Two-dimensional (2D) hierarchical tin dioxide (SnO2) flower-like architectures consisting of sheet-like nanoparticles have been successfully prepared by a simply mild hydrothermal method based on the reaction between tin foil, NaOH and KBrO3. The photoluminescence (PL) spectrum exhibit that the flower-like architectures of SnO2 have strong PL emission, which suggest its possible applications in nanoscaled optoelectronic devices. The formation process of SnO2 architectures is investigated and the corresponding mechanism is also proposed.

Keywords

SnO2 flower-like architectures sheet-like nanoparticles photoluminescence layers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China, and Chinese Ministry of Education.

References

  1. Baumann T.F., Kucheyev S.O., Gash A.E., Satcher J.H. (2005). Facile synthesis of a crystalline, high-surface-area SnO2 Aerogel. Adv. Mater. 17:1546–1548CrossRefGoogle Scholar
  2. Cheng B., Russell J.M., Shi W.S., Zhang L., Samulski E.T. (2004). Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J. Am. Chem. Soc. 126:5972–5973CrossRefPubMedGoogle Scholar
  3. Dong A.G., Ren N., Tang Y., Wang Y.J., Zhang Y.H., Hua W.M., Gao Z. (2003). General synthesis of mesoporous spheres of metal oxides and phosphates. J. Am. Chem. Soc. 125:4976–4977PubMedCrossRefGoogle Scholar
  4. Faglia G., Baratto C., Sberveglieri G. (2005) Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Appl. Phys. Lett. 86:11923–11933CrossRefGoogle Scholar
  5. Hou H.W., Xie Y., Li Q. (2005) Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons. Cryst. Grow. & Design. 5:201–205CrossRefGoogle Scholar
  6. Hu J.Q., Bando Y., Golberg D. (2003). Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. Chem. Phys. Lett. 372:758–762CrossRefGoogle Scholar
  7. Kim T.W., Lee D.U., Yoon Y.S. (2000) Microstructral, electrical, and optical properties of SnO2 nancrystalline thin films grown on InP(100) substrates for applications as gas sensor devices. J. Appl. Phys. 88:3759–3761CrossRefGoogle Scholar
  8. Li Z.Q., Ding Y., Xiong Y.J., Yang Q., Xie Y. (2004). Room-temperature surface-erosion route to ZnO nanorod arrays and urchin-like assemblies. Chem. Eur. J. 10:5823–5828CrossRefGoogle Scholar
  9. Ohgi H., Maeda T., Hosono E., Fujihara S., Imai H. (2005). Evolution of nanoscale SnO2 grains, flakes, and plates into versatile particles and films through crystal growth in aqueous solutions. Cryst. Grow. Design. 5:1079–1083CrossRefGoogle Scholar
  10. Penn R.L., Oskam G., Strathmann T.J., Searson P.C., Stone A.T., Veblen D.R. (2001). Epitaxial assembly in aged colloids. J. Phys.Chem. B 105:2177–2182CrossRefGoogle Scholar
  11. Suo Z., Lu W. (2000). Forces that drive nanoscale self-assembly on solid surfaces. J. Nanoparticle Res 2:333–344CrossRefGoogle Scholar
  12. Wu X.C., Zou B.S., Xu J.R., Yu B.L., Tang G.Q., Zhang G.L., Chen W.J. (1997). Structural characterization and optical properties of nanometer-sized SnO2 capped by stearic acid. Nanostruct. Mater. 8:179–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Qingrui Zhao
    • 1
  • Zhengquan Li
    • 1
  • Changzheng Wu
    • 1
  • Xue Bai
    • 1
  • Yi Xie
    • 1
  1. 1.Nano-materials and Nano-chemistry, Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science & Technology of ChinaHefeiP.R. China

Personalised recommendations