Advertisement

Journal of Nanoparticle Research

, Volume 9, Issue 5, pp 765–776 | Cite as

Particle size effect on magnetotransport properties of nanocrystalline Nd0.7Sr0.3MnO3

  • C. Krishnamoorthy
  • K. Sethupathi
  • V. Sankaranarayanan
  • R. Nirmala
  • S. K. Malik
Article

Abstract

Nanocrystalline samples with an average particle size of 40 and 52 nm have been synthesized by citrate-complex auto-ignition method. Magnetic properties of the samples show para- to ferromagnetic transition at around 135 K. The electron magnetic resonance (EMR) study on these samples indicates the presence of coexistence of two magnetic phases below 290 K. Electrical resistivity follows variable range hopping (VRH) mechanism in the paramagnetic regime. The magnetoresistance (MR) data has been analysed by spin dependent hopping between the localized spin clusters together with the phase-separation phenomenon. These clusters are assumed to be formed by distribution of canted spins and defects all over the nanoparticle. In addition, the hopping barrier depends on the magnetic moment orientation of the clusters. The magnetic moments of the clusters are narrowly oriented in ferro- and are randomly oriented in paramagnetic phase. The ferromagnetic phase contributes to the total MR at low applied magnetic fields whereas the paramagnetic phase contributes at relatively high fields in both the samples. The average cluster size in ferromagnetic phase is bigger than that in paramagnetic phase. It is also observed that the cluster size, in ferromagnetic phase, in 52 nm sample is bigger than that in the 40 nm sample. However, the average cluster size in paramagnetic phase is almost same in both the samples.

Keywords

nanoparticles CMR manganites spin dependent hopping nanostructure synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles B., Sheng P., Coutts M.D. and Arie Y. (1975) Adv. Phys. 24:407–461CrossRefGoogle Scholar
  2. Adams C.P., Lynn J.W., Mukovskii Y.M., Arsenov A.A. and Shulyatev D.A. (2000) Phys. Rev. Lett. 85:3957CrossRefGoogle Scholar
  3. Angappane S., Rangarajan G. and Sethupathi K. (2003) J. Appl. Phys. 93:8334–8336CrossRefGoogle Scholar
  4. Balcells Ll., Fontcuberta J., Martinez B. and Obradors X. (1998) Phys. Rev. B 58:R14697–R14700CrossRefGoogle Scholar
  5. Berkowitz A.E., Schuele W.J. and Flanders P.J. (1968) J. Appl. Phys. 39:1261–1263CrossRefGoogle Scholar
  6. Cai J.W., Wang C., Shen B.G., Zhao J.G. and Zhan W.S. (1997) Appl. Phys. Lett. 71:1727CrossRefGoogle Scholar
  7. Chechersky V., Nath A., Isaac I. and Franck J.P. (1999) Phys. Rev. B 59:497–502CrossRefGoogle Scholar
  8. Chen S.F., Lin P.I., Juan J.Y., Uen T.M., Wu K.H., Gou Y.S. and Lin J.Y. (2003) Appl. Phys. Lett. 82:1242–1244CrossRefGoogle Scholar
  9. Coey J.M.D. (1971) Phys. Rev. Lett. 27:1140–1142CrossRefGoogle Scholar
  10. Coey J.M.D., Viret M., Ranno L. and Ounadjela K. (1995) Phys. Rev. Lett. 75:3910–3913CrossRefGoogle Scholar
  11. Cohn J.L., M. Peterca & J.J. Neumeier, 2004. Phys. Rev. B 70, 214433-1–214433-6Google Scholar
  12. Dagotto E (2003) Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds. Springer-Verlag, BerlinGoogle Scholar
  13. De Teresa J.M., Ritter C., Ibarra M.R., Algarabel P.A., García-Muňoz J.L., Blasco J., García J. and Marquina C. (1997) Phys. Rev. B 56:3317–3324CrossRefGoogle Scholar
  14. Dutta A., N. Gayathri & R. Ranganathan, 2003. Phys. Rev. B 68, 54432-1–054432-8Google Scholar
  15. Evetts J.E., Blamire M.G., Mathur N.D., Isaac S.P., Teo B.S., Cohen L.F. and Macmanus-Driscoll J.L. (1998) Phil. Trans. R. Soc. Lond. A 356:1593–1613CrossRefGoogle Scholar
  16. Fan J., L. Pi, W. Tong, S. Xu, J. Gao, C. Zha & Y. Zhang, 2003. Phys. Rev. B 68, 092407-1–092407-4Google Scholar
  17. Feng J.W. and Hwang L.P. (1999) Appl. Phys. Lett. 75:1592–1594CrossRefGoogle Scholar
  18. Gupta A., Gong G.Q., Xiao G., Lecoeur P.R., Trouilloud, P. Wang Y.Y., Dravid V.P. and Sun J.Z. (1996) Phys. Rev. B 54:R15629–R15632CrossRefGoogle Scholar
  19. Helman J.S and Abeles B. (1976) Phys. Rev. Lett. 37:1429–1432CrossRefGoogle Scholar
  20. Hwang H.Y., Cheong S.W., Ong N.P. and Batlogg B. (1996) Phys. Rev. Lett. 77:2041–2044CrossRefGoogle Scholar
  21. Kasuya T. and Yanase A. (1968) Rev. Mod. Phys. 40:684–696CrossRefGoogle Scholar
  22. Kraus W. and Nolze G. (1996) J. Appl. Cryst. 29:301–303CrossRefGoogle Scholar
  23. Krishnamoorthy C., K. Sethupathi, V. Sankaranarayanan, R.␣Nirmala & S.K. Malik unpublishedGoogle Scholar
  24. López-Quintela M.A., Hueso L.E., Rivas J. and Rivadulla F. (2003) Nanotechnology 14:212–219CrossRefGoogle Scholar
  25. Mayr M., Moreo A., Vergés J.A., Arispe J., Feiguin A. and Dagotto E. (2001) Phys. Rev. Lett. 86:135–138CrossRefGoogle Scholar
  26. Milligan W.O. and J.T. Richardson, 1955 J. Phys. Chem. 59, 831–833; J.T. Richardson and W.O. Milligan, 1956 Phys. Rev. 102, 1289–1294Google Scholar
  27. Moreo A., Mayr M., Feiguin A., Yunoki S. and Dogatto E. (2000) Phys. Rev. Lett. 84:5568–5571CrossRefGoogle Scholar
  28. Morrish A.H. & K. Haneda, 1980, J. Magn. Magn. Mater. 15–18, 1089–1090Google Scholar
  29. Mott N.F. & E.A. Davis, “ Electronic processes in non-crystalline materials” 1971 Clarendon Press, Oxford; Mott N.F., 1972, Adv. Phys. 21, 785Google Scholar
  30. Muroi M., Street R. and McCormick P.G. (2000) J. Appl. Phys. 87:3424–3431CrossRefGoogle Scholar
  31. Néel L. (1962) J. Phys. Soc. Jpn 17(Suppl. B-I):676–685Google Scholar
  32. Neugebauer C.A. and Webb M.B. (1962) J. Appl. Phys. 33:74–82CrossRefGoogle Scholar
  33. Pankhurst Q.A. and Pollard R.J. (1991) Phys. Rev. Lett. 67:248–250CrossRefGoogle Scholar
  34. Parker F.T., Foster M.W., Margulies D.T. and Berkowitz A.E. (1993) Phys. Rev. B 47:7885–7891CrossRefGoogle Scholar
  35. Pattabiraman M., P. Murugaraj, G. Rangarajan, C. Dimitropoulos, J.-Ph. Ansermet, G. Papavassiliou, G. Balakrishnan, Mc K. Paul & M.R. Lees, 2002. Phys. Rev. B 66, 224415-1–224415-7Google Scholar
  36. Richardson J.T., Yiagas D.I., Turk B., Forster K. and Twigg M.V. (1991) J. Appl. Phys. 70:6977–6982CrossRefGoogle Scholar
  37. Sharma N., Venkataramani N., Prasad S., Chandra G. and Pai S.P. (1997) J. Magn. Magn. Matter. 166:65–70CrossRefGoogle Scholar
  38. Song W., F. Luo, Y.-H. Huang, C.-H. Yan, B.-Z. Sun & L.-L. He (2004) J. Appl. Phys. 96, 2731–2735Google Scholar
  39. Sun B.Z., He L.L., Luo F. and Yan C.H. (2005) Phys. Stat. Sol. 202:1883–1890CrossRefGoogle Scholar
  40. Uehara M., Mori S., Chen C.H. and Cheong S.-W. (1999) Nature 399:560–562CrossRefGoogle Scholar
  41. Viret M., Rano L. and Coey J.M.D. (1997) Phys. Rev. B 55:8067–8070CrossRefGoogle Scholar
  42. Wang Z.H., Cai J.W., Shen B.G., Chen X. and Zhan W.S. (2000) J. Phys.: Condens. Matter 12:601–610CrossRefGoogle Scholar
  43. Wagner P., Gordon I., Trappeniers L., Vanacken J., Herlach F., Moshchalkov V.V. and Bruynseraede Y. (1998) Phys. Rev. Lett. 81:3980–3983CrossRefGoogle Scholar
  44. Wu J., J.M. Lynn, C.J. Glinka, J. Berley, H. Zheng, J.F.␣Mitchell & C.Leighton, 2005 Phys. Rev. Lett. 94, 037201-1–037201-4Google Scholar
  45. Xiao J.Q., Jiang J.S., Chein C.L. (1992) Phys. Rev. Lett. 68:3749–3752CrossRefGoogle Scholar
  46. Xiong G.C., Li Q., Ju H.L., Mao S.N., Senapati L., Xi X.X., Greene R.L. and Venkatesan T. (1995) Appl. Phys. Lett. 66:1427–1429CrossRefGoogle Scholar
  47. Yuan S.L., Li Z.Y., Peng G., Yang Y.P., Tu F., Zhang G.Q., Liu J., Zen X.Y., Xiong C.S., Xiong W.H. and Tang C.Q. (2001) J. Phys.: Condens. Matter 13:L509–L514CrossRefGoogle Scholar
  48. Zhang N., Ding W., Zhong W., Xing D. and Du Y. (1997) Phys. Rev. B 56:8138–8142CrossRefGoogle Scholar
  49. Zhu T., Shen B.G., Sun J.R., Zhao H.W. and Zhan W.S. (2001) Appl. Phys. Lett. 78:3863–3865CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C. Krishnamoorthy
    • 1
  • K. Sethupathi
    • 1
  • V. Sankaranarayanan
    • 1
  • R. Nirmala
    • 2
  • S. K. Malik
    • 2
  1. 1.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations