Advertisement

Journal of Nanoparticle Research

, Volume 9, Issue 3, pp 519–522 | Cite as

Preparation of nickel hydroxide nanorods/nanotubes and microscopic nanorings under hydrothermal conditions

  • Qing-Ze Jiao
  • Zhou-Ling Tian
  • Yun Zhao
Brief Communication

Abstract

A new kind of structure nickel hydroxide nanorods/nanotubes and nanorings were prepared using hydrothermal conditions at 180°C. The structures of the products were characterized using X-ray diffractometer. The morphologies were observed using transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The results show the nanorods/nanotubes were about 40–60 nm in diameter, several micrometer in length. The inner diameters of the nanotubes and nanorings were all around 20 nm. The formation mechanism of the nanorings was discussed.

Keywords:

nickel hydroxide nanoring nanotube nanorod synthesis method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Mr. Lu for TEM measurements. The seed funding Grant of Beijing Institute of Technology Research Committee supported this work. Financial support from national defence 10th five-year plan, China is also acknowledged (No. 41328030507).

References

  1. An C.H., Tang K.B., Liu X.M., Li F.Q., Zhou G.E., Qian Y.T. (2003). J. Crystal Growth 252:575CrossRefGoogle Scholar
  2. Gan H.Y., Liu H.B., Li Y.L., Liu Y., Lu F.S., Jiu T.G., Zhu D.B. (2004). Chem. Phys. Lett. 399:130CrossRefGoogle Scholar
  3. Hu Q., Deng B., Zhang W.X., Tang K.B., Qian Y.T. (2001). Int. J. Inorg. Mater. 3:639CrossRefGoogle Scholar
  4. Huang J.X., Kaner R.B. (2004). J. Am. Chem. Soc. 126:851CrossRefPubMedGoogle Scholar
  5. Iijima S. (1991). Nature 354:56CrossRefGoogle Scholar
  6. Leung Y.H., A.B. Djuris, J. Gao, M.H. Xie, Z.F. Wei, S.J. Xu & W.K. Chan, 2004. Chem. Phys. Lett. [J]394, 452.Google Scholar
  7. Li X.L., Liu J.F., Li Y.D. (2003). Mater. Chem. Phys. 80:222CrossRefGoogle Scholar
  8. Liang C.H., Meng G.W., Chen W., Wang Y.W., Zhang L.D. (2000). J. Crystal Growth 220:296CrossRefGoogle Scholar
  9. Liang Z.H., Zhu Y.J., Hu X.L. (2004). J. Phys. Chem. B 108:3488CrossRefGoogle Scholar
  10. Liu X.H. & L. Yu, 2004a. Mater. Lett. 58, 1327.Google Scholar
  11. Liu X.H. & L. Yu, 2004b. J. Power Sour. 128, 326.Google Scholar
  12. Liu B., Zeng H.C. (2003). J. Am. Chem. Soc. 125:4430CrossRefPubMedGoogle Scholar
  13. Nie Q.L., Xu Z.D., Yuan Q.L., Li G.H. (2003). Mater. Chem. Phys. 82:808CrossRefGoogle Scholar
  14. Subbaiah T., Mallick S.C., Mishra K.G., Sanjay K., Das R.P. (2002). J. Power Sour. 112:562CrossRefGoogle Scholar
  15. Sun X.M., Chen X., Deng Z.X., Li Y.D. (2002). Mater. Chem. Phys. 78:99CrossRefGoogle Scholar
  16. Sun Y.L., Chen X.S., Sun L.Z., Guo X.G., Lu W. (2003). Chem. Phys. Lett. 381:397CrossRefGoogle Scholar
  17. Tang Q., Liu Z.P., Li S., Zhang S.Y., Liu X.M., Qiana Yitai (2003). J. Crystal Growth 259:208CrossRefGoogle Scholar
  18. Wang X., Li Y.D. (2003). Chem. Eur. J. 9(1):300CrossRefGoogle Scholar
  19. Wang J.X., Xie S.S., Yuan H.J., Yan X.Q., Liu D.F., Gao Y., Zhou Z.P., Song L., Liu L.F., Zhao X.W., Dou X.Y., Zhou W.Y., Wang G. (2004). Solid State Commun.131:435CrossRefGoogle Scholar
  20. Xu A.W., Fang Y.P., You L.P., Liu H.Q. (2003). J. Am. Chem. Soc. 125:1494CrossRefPubMedGoogle Scholar
  21. Xu J., Li Y.D. (2003). J. Colloid Interf. Sci. 259:275–281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of Chemical Engineering and EnvironmentBeijing Institute of TechnologyBeijingP.R. China
  2. 2.Book Preservation Section, Department of Rare Books and Special CollectionNational Library of ChinaBeijingP.R. China

Personalised recommendations