Journal of Nanoparticle Research

, Volume 9, Issue 5, pp 737–743 | Cite as

Growth and magnetic behavior of bismuth substituted yttrium iron garnet nanoparticles



Crystal growth and the magnetic properties of bismuth substituted yttrium iron garnet (Bi-YIG) nanoparticles were studied with particular focus on the bismuth composition dependence of the magnetic properties of the particles and the effects of annealing on the garnet phase formation. The Bi-YIG nanoparticles of 47–67 nm in size can be chemically synthesized when they are annealed at 650–850 °C. Both the lattice constant and the magnetization of the garnet nanoparticles linearly increase when the bismuth composition in the Bi-YIG particles increases. We have found that chemically synthesized nanoparticles transform from the amorphous to the garnet phase when annealed at temperatures below 650 °C, while the onset of magnetic moment of iron in the garnet nanoparticles is observed slightly above 650 °C. According to Mössbauer effect measurements, the hyperfine fields of 57Fe at the tetrahedral and octahedral sites in the garnet are 39 and 48 T, respectively.


yttrium iron garnet nanoparticles magnetic properties coprecipitation crystal growth nanocomposites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avrami M., (1939) Kinetics of phase change. I. General theory. J. Chem. Phys. 7:1103–1112CrossRefGoogle Scholar
  2. Avrami M., (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8:212–224CrossRefGoogle Scholar
  3. Avrami M., (1941) Granulation, phase change, and microstructure kinetics of phase change, III. J. Chem. Phys. 9:177–184CrossRefGoogle Scholar
  4. Crossley W.A., Cooper R.W., Page J.L., van Stapele R.P. (1969) Faraday rotation in rare-earth iron garnets. Phys. Rev. 181:896–904CrossRefGoogle Scholar
  5. Hansen P., Witter K., Tolksdorf W. (1983a) Magnetic and magneto-optical properties of bismuth-substituted gadolinium iron garnet films. Phys. Rev. B 27:4375–4383CrossRefGoogle Scholar
  6. Hansen P., Witter K., Tolksdorf W. (1983b) Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films. Phys. Rev. B 27:6608–6625CrossRefGoogle Scholar
  7. Kahl S., Grishin A.M. (2004) Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal. Appl. Phys. Lett. 84:1438–1440CrossRefGoogle Scholar
  8. Kahn F.J., Pershan P.S., Remeika J.P. (1969) Ultraviolet magneto-optical properties of single-crystal orthoferrites garnets, and other ferric oxide compounds. Phys. Rev. 186:891–918CrossRefGoogle Scholar
  9. Kim H., Grishin A., Rao K.V. (2001) Giant Faraday rotation of blue light in epitaxial CeXY3-XFe5O12 films grown by pulsed laser deposition. J. Appl. Phys. 89:4380–4383CrossRefGoogle Scholar
  10. Kim T.Y., Hirano T., Kitamoto Y., Yamazaki Y. (2003) Novel nanoparticle milling process for Bi-YIG dispersed transparent films. IEEE Trans. Magn. 39:2078–2080CrossRefGoogle Scholar
  11. Kodama R.H., Berkowitz A.E. (1999) Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59:6321–6336CrossRefGoogle Scholar
  12. Kurumida J., Chang N.S. (1998) Experimental investigation of the nonlinear interaction between optical guided waves and magnetostatic forward volume waves in a Bi-YIG film. IEEE Trans. Magn. 34:1399–1401CrossRefGoogle Scholar
  13. Lacklison D.E., Scott G.B., Ralph H.I., Page J.L. (1973) Garnets with high magnetooptic figures of merit in the visible region. IEEE Trans. Magn. 9:457–460CrossRefGoogle Scholar
  14. Miura N., Kido G., Oguro I., Kawauchi K., Chikazumi S., Dillon Jr. J.F., Van Uitert L.G. (1977) Faraday rotation observed for iron garnets in megagauss fields. Physica B&C 86–88:1219–1220CrossRefGoogle Scholar
  15. Nomura K., Hanai T., Sadamoto R., Ujihira Y., Ryuo T., Tanno M. (1994) Conversion electron Mössbauer spectroscopic study of YIG substituted with Bi, Ti, Ga and La. Hyperfine Interact. 84:421–426CrossRefGoogle Scholar
  16. Sánchez R.D., Rivas J., Vaqueiro P., López-Quintela M.A., Caeiro D. (2002) Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J. Magn. Magn. Magn. 247:92–98Google Scholar
  17. Scott G.B., Lacklison D.E. (1976) Magnetooptic properties and applications of bismuth substituted iron garnets. IEEE Trans. Magn. 12:292–311CrossRefGoogle Scholar
  18. Shinagawa K., Tobita E., Ando K., Saito T., Tsushima T. (1997) Charge transfer-originated large Faraday rotation in Rh4+-substituted magnetic garnets. J. Appl. Phys. 81:1368–1371CrossRefGoogle Scholar
  19. Shintaku T., Tate A., Mino S. (1997) Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy. Appl. Phys. Lett. 71:1640–1642CrossRefGoogle Scholar
  20. Šimša J., Le Gall H., Šimšová J., Koláček J., Le Paillier-Malécot A. (1984) Spectral dependences of Faraday rotation inY3-XBiXFe5O12. IEEE Trans. Magn. Mag. 20:1001–1003CrossRefGoogle Scholar
  21. Strocka B., Holst P., Toklsdorf W. (1978) An empirical formula for the calculation of lattice constants of oxide garnets based on substituted yttrium- and gadolinium-iron garnets. Phillips J. Res. 33:186–202Google Scholar
  22. Wemple S.H., Dillon Jr. J.F., Van Uitert L.G., Grodkiewicz W.H. (1973) Iron garnet crystals for magneto-optic light modulators at \(1.064\,\upmu\)m. Appl. Phys. Lett. 22:331–333CrossRefGoogle Scholar
  23. Wittekoek S., Pompa T.J.A. (1973) Magneto-optic Kerr rotation of bismuth-substituted iron garnets in the 2–5.2 eV spectral range. J. Appl. Phys. 44:5560–5566CrossRefGoogle Scholar
  24. Wittekoek S., Pompa T.J.A., Robertson J.M., Bongers P.F. (1975) Magneto-optic spectra and the dielectric tensor elements of bismuth substituted iron garnets at photon energies between 2.2–5.2 eV. Phys. Rev. B 12:2777–2788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations