Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 1083–1087 | Cite as

Network structure consisting of chain-like arrays of gold nanoparticles and silica layer prepared using a nonionic reverse-micelle template

  • Hideki Matsune
  • Teruoki Tago
  • Kazuhiro Shibata
  • Katsuhiko Wakabayashi
  • Masahiro Kishida
Brief communication

Abstract

A nonionic reverse-micelle based approach is described for fabrication of a network structure consisting of chain-like arrays of gold nanoparticles, followed by coating process with a uniform silica layer using a sol-gel method. The hexadecyl-poly (ethylene oxide-15) ether (designated C16E15) is used as a template for this study. The effects of a water-to-surfactant molar ratio (w) as well as the concentration of tetraethyl orthosilicate ([TEOS]oil) are investigated on the resulting organized structures.

Keywords

gold nanoparticle hexadecyl-poly (ethylene oxide-15) ether microemulsion one dimensional array silica coating nonionic reverse micelle soft template sol-gel method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors thank the Research Laboratory of High Voltage Electron Microscopy, Kyushu University, for the use of TEM (JEM-2000FX, Nihon Densi). This research has been supported by the 21st Century COE program of “Functional Innovation of Molecular Informatics” from the ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. Fullam S., Cottell D., Rensmo H., Fitzmaurice D. (2000) Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv. Mater. 12:1430CrossRefGoogle Scholar
  2. Jahn W., Strey R. (1988). Microstructure of microemulsions by freeze fracture electron microscopy. J. Phys. Chem. 92:2294CrossRefGoogle Scholar
  3. Kishida M., T. Tago, T. Hatsuta & K. Wakabayashi, 2000. Preparation of silica-coated rhodium nanoparticles using water-in-oil microemulsion. Chem. Lett. 29, 1108--1109Google Scholar
  4. Li M., Schnablegger H., Mann S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402:393Google Scholar
  5. Liz-Marzán L.M., Giersig M., Mulvaney P. (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12:4329Google Scholar
  6. Nakao S., Torigoe K., Kon-No K., Yonezawa T. (2002) Self-assembled one-dimensional arrays of gold-dendron nanocomposites. J. Phys. Chem. B. 106:12097CrossRefGoogle Scholar
  7. Schmid G. (2004). Nanoparticles: From Theory to Application. John Wiley & Sons, New YorkGoogle Scholar
  8. Stella M., Brousseau L.C. III, Jones A., Feldheim D.L. (1998) Template synthesis of one-dimensional Au, Au-Poly(pyrrole), and poly(pyrrole) nanoparticle arrays. Chem. Mater. 10:1214Google Scholar
  9. Tago T., Tashiro S., Hashimoto Y., Wakabayashi K., Kishida M. (2003) Synthesis and optical properties of SiO2-coated CeO2 nanoparticles. J. Nanoparticle Res. 5:55CrossRefGoogle Scholar
  10. Wyrwa D., Beyer N., Schmid G. (2002) One-dimensional arrangements of metal nanoclusters. Nano Lett. 2:419CrossRefGoogle Scholar
  11. Yonezawa T., Matsune H., Kimizuka N. (2003) Formation of an isolated spherical three-dimensional nanoparticle assembly as stable submicronmeter-sized units by using an inorganic wrapping technique. Adv. Mater. 15:499CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hideki Matsune
    • 1
  • Teruoki Tago
    • 1
  • Kazuhiro Shibata
    • 1
  • Katsuhiko Wakabayashi
    • 1
  • Masahiro Kishida
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringKyushu UniversityFukuoka CityJapan

Personalised recommendations