Journal of Nanoparticle Research

, Volume 8, Issue 5, pp 543–562 | Cite as

Health implications of nanoparticles

  • Wolfgang G. Kreyling
  • Manuela Semmler-Behnke
  • Winfried Möller


Nanoparticles are increasingly used in a wide range of applications in science, technology and medicine. Since they are produced for specific purposes which cannot be met by larger particles and bulk material they are likely to be highly reactive, in particular, with biological systems. On the other hand a large body of know-how in environmental sciences is available from toxicological effects of ultrafine particles (smaller than 100 nm in size) after inhalation. Since nanoparticles feature similar reactivity as ultrafine particles a sustainable development of new emerging nanoparticles is required. This paper gives a brief review on the dosimetry of nanoparticles, including deposition in the various regions of the respiratory tract and systemic translocation and uptake in secondary target organs, epidemiologic associations with health effects and toxicology of inhaled nanoparticles. General principles and current paradigms to explain for the specific behaviour of nanoparticles in toxicology are discussed. With that respect we consider nanoparticles to be in the range from 1 to 2 nm (clusters of atoms/molecules) to particles that are smaller than 100 nm at least in one dimension. Since the evidence for health risks of ultrafine and nanoparticles after inhalation has been increasing over the last decade, the paper attempts to extrapolate these findings and principles observed in particle inhalation toxicology into recommendations for an integrated concept of risk assessment of nanoparticles for a broad range of use in science, technology and medicine.


ultrafine particles nanoparticles health effects particle dosimetry epidemiological evidence toxicological plausibility environment nanotechnology safety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asgharian B., Hofmann W., Bergmann R., (2001). Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34:332–339CrossRefGoogle Scholar
  2. Barnes P.J. (2001). Neurogenic inflammation in the airways. Respir. Physiol. 125(1–2):145–154CrossRefGoogle Scholar
  3. Bathori G., Cervenak L., and Karadi I. (2004). Caveolae–an alternative endocytotic pathway for targeted drug delivery. Crit Rev. Ther. Drug Carrier Syst. 21(2):67–95CrossRefGoogle Scholar
  4. Bodian D., and Howe H.A., (1941). The rate of progression of poliomyelitis virus in nerves. Bull. Johns Hopkins Hosp. 69:79–85Google Scholar
  5. Boland S., Baeza-Squiban A., Fournier T., Houcine O., Gendron M.C., Chévrier M., Jouvenot G., Coste A., Aubier M., and Marano F., (1999). Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am. J. Physiol. 276(4):L604–L613Google Scholar
  6. Boland S., Bonvallot V., Fournier T., Baeza-Squiban A., Aubier M., and Marano F., (2000). Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells. Am. J. Physiol. 278(1):L25–L32Google Scholar
  7. Borm P.J., and Kreyling W., (2004). Toxicological hazards of inhaled nanoparticles – potential implications for drug delivery. J. Nanosci. Nanotech. 4(5):521–531CrossRefGoogle Scholar
  8. Brook R.D., Franklin B., Cascio W., Hong Y., Howard G., Lipsett M., Luepker R., Mittleman M., Samet J., Smith S.C. Jr., and Tager I., (2004). Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109(21):2655–2671CrossRefGoogle Scholar
  9. Brooking J., Davis S.S., and Illum L., (2001). Transport of nanoparticles across the rat nasal mucosa. J. Drug Target 9(4):267–279CrossRefGoogle Scholar
  10. Brown J.S., Zeman K.L., and Bennett W.D., (2002). Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Crit. Care Med. 166(9):1240–1247CrossRefGoogle Scholar
  11. BSI-PAS71, 2005. Vocabulary – Nanoparticles. British Standard Institution (BSI).
  12. Chin B.Y., Choi M.E., Burdick M.D., Strieter R.M., Risby T.H., Choi A.M., (1998). Induction of apoptosis by particulate matter: role of TNF-alpha and MAPK. Am. J. Physiol. 275(5 Pt 1):L942–L949Google Scholar
  13. de Lorenzo A.J.D., and Darin J. (1970). The olfactory neuron and the blood–brain barrier. In: Wolstenholme G.E.W. and Knight J., (eds). Taste and Smell in Vertebrates. Churchill, London, pp. 151–176Google Scholar
  14. Donaldson K., (2003). The biological effects of coarse and fine particulate matter. Occup. Environ. Med. 60(5):313–4CrossRefGoogle Scholar
  15. Donaldson K., Li X.Y., and MacNee W., (1998). Ultrafine (nanometre) particle mediated lung injury. J. Aerosol Sci. 29(5–6):553–560CrossRefGoogle Scholar
  16. Donaldson K., Stone V., Borm P.J., Jimenez L.A., Gilmour P.S., Schins R.P., Knaapen A.M., Rahman I., Faux S.P., Brown D.M., and MacNee W., (2003). Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic. Biol. Med. 34(11):1369–1382CrossRefGoogle Scholar
  17. Donaldson K., Stone V., Seaton A., and MacNee W., (2001). Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ. Health Persp. 109(Suppl 4):523–527Google Scholar
  18. Donaldson K., and Tran C.L., (2004). An introduction to the short-term toxicology of respirable industrial fibres. Mutat. Res. 553(1–2):5–9Google Scholar
  19. Dye J.A., Lehmann J.R., McGee J.K., Winsett D.W., Ledbetter A.D., Everitt J.I., Ghio A.J., and Costa D.L., (2001). Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah Valley residents. Environ. Health Persp. 109(3):395–403Google Scholar
  20. ESF, 2005. ESF forward look on Nanomedicine. European Science Foundation Policy Briefings.
  21. Fahy O., Tsicopoulos A., Hammad H., Pestel J., Tonnel A.B., and Wallaert B., (1999). Effects of diesel organic extracts on chemokine production by peripheral blood mononuclear cells. J. Allergy Clin. Immunol. 103(6):1115–1124CrossRefGoogle Scholar
  22. Faux S.P., Tran C.L., Miller B.G., Jones A.D., Monteiller C., and Donaldson K. (2003). In Vitro Determinants of Particulate Toxicity: the Dose-Metric for Poorly Soluble Dusts. Health and Safety Executive, Crown, Norwich UKGoogle Scholar
  23. Gavett S.H., Bishop L.R., Haykal-Coates N., Heinrich J., and Gilmour M.I., (2001). Effects of particles from two german cities on allergic responses in mice. Am. J. Respir. Crit. Care Med. 163:A50Google Scholar
  24. Geiser M., Rothen-Rutishauser B., Kapp N., Schurch S., Kreyling W., Schulz H., Semmler M., Hof V.I., Heyder J., and Gehr P., (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Persp. 113(11):1555–1560Google Scholar
  25. Ghio A.J., and Devlin R.B., (2001). Inflammatory lung injury after bronchial instillation of air pollution particles. Am. J. Respir. Crit. Care Med. 164(4):704–708Google Scholar
  26. Gilmour P.S., Rahman I., Hayashi S., Hogg J.C., Donaldson K., and MacNee W., (2001). Adenoviral E1A primes alveolar epithelial cells to PM(10)-induced transcription of interleukin-8. Am. J. Physiol. Lung Cell Mol. Physiol. 281(3):L598–L606Google Scholar
  27. Gumbleton M., (2001). Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv. Drug Deliv. Rev. 49(3):281–300CrossRefGoogle Scholar
  28. Heckel K., Kiefmann R., Dorger M., Stoeckelhuber M., and Goetz A.E., (2004). Colloidal gold particles as a new in vivo marker of early acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 287(4):L867–L878CrossRefGoogle Scholar
  29. Heinrich J., Hoelscher B., Frye C., Meyer I., Pitz M., Cyrys J., Wjst M., Neas L., and Wichmann H.E., (2002a). Improved air quality in reunified Germany and decreases in respiratory symptoms. Epidemiology 13(4):394–401CrossRefGoogle Scholar
  30. Heinrich J., Hoelscher B., Frye C., Meyer I., Wjst M., and Wichmann H.E., (2002b). Trends in prevalence of atopic diseases and allergic sensitization in children in Eastern Germany. Eur. Respir. J. 19(6):1040–6CrossRefGoogle Scholar
  31. Heinrich J., Hoelscher B., and Wichmann H.E., (2000). Decline of ambient air pollution and respiratory symptoms in children. Am. J. Respir. Crit. Care Med. 161(6):1930–1936Google Scholar
  32. Hopwood D., Spiers E.M., Ross P.E., Anderson J.T., McCullough J.B., and Murray F.E., (1995). Endocytosis of fluorescent microspheres by human oesophageal epithelial cells: comparison between normal and inflamed tissue. Gut 37(5):598–602Google Scholar
  33. Howe H.A., and Bodian D., (1940). Poliomyelitis in the chimpanzee: a clinical–pathological study. Proc. Soc. Exp. Biol. Med. 43:718–721Google Scholar
  34. Hunter D.D., and Undem B.J., (1999). Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am. J. Respir. Crit. Care Med. 159(6):1943–1948Google Scholar
  35. ICRP Publication 66, 1994. Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Ann. ICRP 24(1–3), 1–482Google Scholar
  36. Innes N.P., and Ogden G.R., (1999). A technique for the study of endocytosis in human oral epithelial cells. Arch. Oral Biol. 44(6):519–523CrossRefGoogle Scholar
  37. Kapp N., Kreyling W., Schulz H., Im Hof V., Gehr P., Semmler M., and Geiser M., (2004). Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc. Res. Tech. 63(5):298–305CrossRefGoogle Scholar
  38. Kawasaki S., Takizawa H., Takami K., Desaki M., Okazaki H., Kasama T., Kobayashi K., Yamamoto K., Nakahara K., Tanaka M., Sagai M., and Ohtoshi T., (2001). Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 24(4):419–426Google Scholar
  39. Kreuter J., Shamenkov D., Petrov V., Ramge P., Cychutek K., Koch-Brandt C., and Alyautdin R., (2002). Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target 10(4):317–325CrossRefGoogle Scholar
  40. Kreyling W.G., and Scheuch G. (2000). Clearance of particles deposited in the lungs. In: Gehr P. and Heyder J., (eds). Particle-Lung Interactions. Marcel Dekker Inc., New York, Basel pp. 323–376Google Scholar
  41. Kreyling W.G., Semmler M., Erbe F., Mayer P., Takenaka S., Schulz H., Oberdörster G., and Ziesenis A., (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Env. Health A 65(20):1513–1530CrossRefGoogle Scholar
  42. Kreyling W.G., Semmler M., and Möller W., (2004). Dosimetry and toxicology of ultrafine particles. J. Aerosol Med. 17(2):140–152CrossRefGoogle Scholar
  43. Kreyling W.G., Tuch T., Peters A., Pitz M., Heinrich J., Stölzel M., Cyrys J., Heyder J., and Wichmann H.E., (2003). Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by the German unification. Atmos. Environ. 37(27):3841–3848CrossRefGoogle Scholar
  44. Kreyling W.G.., Semmler-Behnkel M., and Moeller W., (2006). Dosimetry, epidomology and toxicology of nanoparticles – Chapter 4. In: Kumar C.S.S.R. ed. Nanomaterials–Toxicity, Health and Environmental Issues. Nanotechnologies for the Life Sciences. WILEY-VCH Publishers, Weinheim, Vol. 50Google Scholar
  45. Li N., Kim S., Wang M., Froines J., Sioutas C., and Nel A., (2002a). Use of a stratified oxidative stress model to study the biological effects of ambient concentrated and diesel exhaust particulate matter. Inhal. Toxicol. 14(5):459–486CrossRefGoogle Scholar
  46. Li N., Wang M., Oberley T.D., Sempf J.M., and Nel A.E., (2002b). Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J. Immunol. 169(8):4531–4541Google Scholar
  47. Li X.Y., Gilmour P.S., Donaldson K., and MacNee W., (1996). Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 51(12):1216–1222Google Scholar
  48. Meiring J.J., Borm P.J., Bagate K., Semmler M., Seitz J., Takenaka S., and Kreyling W.G., (2005). The influence of hydrogen peroxide and histamine on lung permeability and translocation of iridium nanoparticles in the isolated perfused rat lung. Part. Fibre Toxicol. 2(1):3CrossRefGoogle Scholar
  49. Nel A.E., Diaz-Sanchez D., and Li N., (2001). The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr. Opin. Pulm. Med. 7(1):20–26CrossRefGoogle Scholar
  50. Nemmar A., Hoet P.H., Dinsdale D., Vermylen J., Hoylaerts M.F., and Nemery B., (2003). Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 107(8):1202–1208CrossRefGoogle Scholar
  51. Nemmar A., Hoet P.H., Vanquickenborne B., Dinsdale D., Thomeer M., Hoylaerts M.F., Vanbilloen H., Mortelmans L., and Nemery B., (2002). Passage of inhaled particles into the blood circulation in humans. Circulation 105(4):411–414CrossRefGoogle Scholar
  52. Nemmar A., Hoylaerts M.F., Hoet P.H., Dinsdale D., Smith T., Xu H., Vermylen J., and Nemery B., (2002). Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am. J. Respir. Crit. Care Med. 166(7):998–1004CrossRefGoogle Scholar
  53. Nemmar A., Vanbilloen H., Hoylaerts M.F., Hoet P.H., Verbruggen A., and Nemery B., (2001). Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am. J. Respir. Crit. Care Med. 164(9):1665–1668Google Scholar
  54. Nichols B., (2003). Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 116(Pt 23):4707–4714CrossRefGoogle Scholar
  55. Oberdoerster G., Ferin J., and Lehnert B.E., (1994). Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Persp. 102(Suppl 5):173–179Google Scholar
  56. Oberdörster G., (1988). Lung clearance of inhaled insoluble and soluble particles. J. Aerosol Med. 1(4):289–330CrossRefGoogle Scholar
  57. Oberdörster G., (1993). Lung dosimetry: pulmonary clearance of inhaled particles. Aerosol Sci. Technol. 18:279–289Google Scholar
  58. Oberdörster G., (1996). Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal. Toxicol. 8(Suppl):73–89Google Scholar
  59. Oberdörster G., (2000). Toxicology of ultrafine particles: in vivo studies. Philos. T. Roy. Soc. A 358(1775):2719–2739CrossRefGoogle Scholar
  60. Oberdörster G., Oberdörster E., and Oberdörster J., (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp. 113:823–839CrossRefGoogle Scholar
  61. Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., and Cox C., (2004). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16(6–7):437–445CrossRefGoogle Scholar
  62. Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Lunts A., Kreyling W.G., and Cox C., (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Env. Health A 65(20):1531–1543CrossRefGoogle Scholar
  63. Oberdörster G., and Utell M.J., (2002). Ultrafine particles in the urban air: to the respiratory tract and beyond?. Environ. Health Persp. 110(8):A440–A441Google Scholar
  64. Parton R.G., and Richards A.A., (2003). Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4(11):724–738CrossRefGoogle Scholar
  65. Pitz M., Kreyling W.G., Holscher B., Cyrys J., Wichmann H.E., and Heinrich J., (2001). Change of the ambient particle size distribution in East Germany between 1993 and 1999. Atmos. Environ. 35(25):4357–4366CrossRefGoogle Scholar
  66. Pope C.A. III, 1989. Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am. J. Public Health 79(5), 623–628Google Scholar
  67. Pope C.A. III, 2000. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk?. Environ. Health Persp. 108(Suppl 4), 713–723Google Scholar
  68. Pope C.A. III, Schwartz J. & Ransom M.R., 1992. Daily mortality and PM10 pollution in Utah Valley. Arch. Environ. Health 47(3), 211–217Google Scholar
  69. Ransom M.R., and Pope C.A. III, (1992). Elementary school absences and PM10 pollution in Utah Valley. Environ. Res. 58(2):204–219CrossRefGoogle Scholar
  70. Rejman J., Oberle V., Zuhorn I.S., and Hoekstra D., (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377(Pt 1):159–169CrossRefGoogle Scholar
  71. Roth C., Ferron G.A., Karg E., Lentner B., Schumann G., Takenaka S., Heyder J., (2004). Generation of ultrafine particles by spark discharging. Aerosol Sci. Technol. 38(3):228–235CrossRefGoogle Scholar
  72. Schaumann F., Borm P.J., Herbrich A., Knoch J., Pitz M., Schins R.P., Luettig B., Hohlfeld J.M., Heinrich J., and Krug N., (2004). Metal-rich ambient particles (particulate matter 2.5) cause airway inflammation in healthy subjects. Am. J. Respir. Crit. Care Med. 170(8):898–903CrossRefGoogle Scholar
  73. Schulz H., Brand P., Heyder J. (2000). Particle deposition in the respiratory tract. In: Gehr P., Heyder J., (eds). Particle-Lung Interactions. Marcel Dekker Inc., New York, Basel, pp. 229–290Google Scholar
  74. Schulz H., Harder V., Ibald-Mulli A., Khandoga A., Koenig W., Krombach F., Radykewicz R., Stampfl A., Thorand B., Peters A., (2005). Cardiovascular effects of fine and ultrafine particles. J. Aerosol Med. 18(1):1–22CrossRefGoogle Scholar
  75. Seaton A., and Donaldson K., (2005). Nanoscience, nanotoxicology, and the need to think small. Lancet 365(9463):923–924CrossRefGoogle Scholar
  76. Semmler M., Seitz J., Erbe F., Mayer P., Heyder J., Oberdörster G., Kreyling W.G., (2004). Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Toxicol. 16(6–7):453–459CrossRefGoogle Scholar
  77. Shi T., Schins R.P., Knaapen A.M., Kuhlbusch T.A.J., Pitz M., Heinrich J., Borm P.J.A., (2003). Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor abient particulate matter composition. J. Environ. Monitor. 5(4):550–556CrossRefGoogle Scholar
  78. Silva V.M., Corson N., Elder A., and Oberdörster G., (2005). The rat ear vein model for investigating in vivo thrombogenicity of ultrafine articles (UFP). Toxicol. Sci. 85:983–989CrossRefGoogle Scholar
  79. Szymczak W., Kreyling W.G., Seitz J., and Wittmaack K., (2004). Mass spectrometric characterisation of pure and mixed ultrafine particles of iridium and carbon. J. Aerosol Sci. 35(Suppl. 1):37–38Google Scholar
  80. Takenaka S., Karg E., Roth C., Schulz H., Ziesenis A., Heinzmann U., Schramel P., and Heyder J., (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Persp. 109(Suppl. 4):547–551Google Scholar
  81. The Royal Society (2004). Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and The Royal Academy of Engineering, London, UKGoogle Scholar
  82. US Environmental Protection Agency (EPA). Air quality criteria for particulate matter. EPA/600/P-99/0022aD and bD. 2004. Research Triangle Park, NC, USEPA, National Center for Environmental AssessmentGoogle Scholar
  83. Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A., and Webb T.R., (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77(1):117–125CrossRefGoogle Scholar
  84. Wichmann H.E., and Peters A., (2000). Epidemiological evidence of the effects of ultrafine particle exposure. Philos. T. Roy. Soc. A 358(1775):2751–2769CrossRefGoogle Scholar
  85. Wiebert P., A. Sanchez-Crespo, J. Seitz, R. Falk, K. Philipson, W.G. Kreyling, W. Möller, K. Sommerer, S. Larsson & M. Svartengren, 2005. Negligible clearance of ultrafine carbonaceous particles retained in healthy and affected human lungs. Eur. Respir. J. submittedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Wolfgang G. Kreyling
    • 1
    • 2
  • Manuela Semmler-Behnke
    • 1
    • 2
  • Winfried Möller
    • 1
    • 3
  1. 1.Institute for Inhalation BiologyGSF-National Research Centre for Environment & HealthNeuherberg/MunichGermany
  2. 2.Focus-Network Aerosols and HealthGSF-National Research Centre for Environment & HealthNeuherberg/MunichGermany
  3. 3.Clinical Research Group ‘Inflammatory Lung Diseases’GSF-National Research Centre for Environment & HealthGauting/MunichGermany

Personalised recommendations