Journal of Nanoparticle Research

, Volume 9, Issue 4, pp 595–603 | Cite as

Size and interface effects on Curie temperature of perovskite ferroelectric nanosolids

  • X.Y. Lang
  • Q. Jiang


A simple and unified model, without any adjustable parameter, is established for size effect on Curie temperature of low-dimensional ferroelectrics (thin films, nanowires and nanoparticles), T c(D), where D denotes size of low-dimensional ferroelectrics. T c(D) function is based on consideration on the size dependence of spontaneous polarization of low-dimensional ferroelectrics P s(D), which is determined by the misfit strain at the ferroelectrics/substrate interface. It is shown that P s(D) and T c(D) functions decrease or increase when the misfit strain is tensile or compressive. The numerically predicted results are in agreement with the available experimental results of BaTiO3 and PbTiO3 nanoparticles and thin films.


Curie temparature size effect interface ferroelectrics nanoparticles modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge support by National Key Basic Research and Development Program (Grant No. 2004CB619301) and by “985 Project” of Jilin University are acknowledged.


  1. Abe K., Komatsu S., (1995). Ferroelectric properties in epitaxially grown BaxSr1-xTiO3 thin films. J. Appl. Phys. 77:6461–6465CrossRefGoogle Scholar
  2. Abrahams S.C., Kurtz S.K., Jamieson P.B., (1968). Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 172:551–553CrossRefGoogle Scholar
  3. Ahn C.H., Rabe K.M., Triscone J.M., (2004). Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303:488–491CrossRefGoogle Scholar
  4. Barsch G.R., Krumhansl J.A., (1984). Twin Boundaries in Ferroelastic Media without Interface Dislocations. Phys. Rev. Lett. 53:1069–1072CrossRefGoogle Scholar
  5. Buscaglia M.T., Buscaglia V., Viviani M., Petzelt J., Savinov M., Mitoseriu L., Testino A., Nanni P., Harnagea C., Zhao Z., Nygren M., (2004). Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics. Nanotechnology 15:1113–1117CrossRefGoogle Scholar
  6. Chattopadhyay S., Ayyub P., Palkar V.R., Multani M., (1995). Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B 52:13177–13183CrossRefGoogle Scholar
  7. Cohen R.E., (1992). Origin of ferroelectricity in perovskite oxides. Nature 358:136–138CrossRefGoogle Scholar
  8. Fong D.D., Stephenson G.B., Streiffer S.K., Eastman J.A., Auciello O., Fuoss P.H., Thompson G., (2004). Ferroelectricity in ultrathin perovskite films. Science 304:1650–1653CrossRefGoogle Scholar
  9. Fu H.X., Bellaiche L., (2003). Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91:257601–4CrossRefGoogle Scholar
  10. Haeni J.H., Irvin P., Chang W., Uecker R., Reiche P., Li Y.L., Choudhury S., Tian W., Hawiey M.E., Craigo B., Tagantsev A.K., Pan X.Q., Streiffer S.K., Chen L.Q., Kirchoefer S.W., Levy J., Schlom D.G., (2004). Room-temperature ferroelectricity in strained SrTiO3. Nature 430:758–761CrossRefGoogle Scholar
  11. Ishikawa K., Yoshikawa K., Okada N., (1988). Size effect on the ferroelectric phase transition in PbTiO3 ultrathin particles. Phys. Rev. B 37:5852–5855CrossRefGoogle Scholar
  12. Jiang Q., Cui X.F., Zhao M., (2004). Size effects on Curie temperature of ferroelectric particles. Appl. Phys. A 78:703–704CrossRefGoogle Scholar
  13. Jiang Q., Tong H.Y., Hsu D.T., Okuyama K., Shi F.G., (1998). Thermal stability of crystalline thin films. Thin Solid Films 312:357–361CrossRefGoogle Scholar
  14. Jiang Q., Shi H.X., Zhao M., (1999). Melting thermodynamics of organic nanocrystals. J. Chem. Phys. 111:2176–2180CrossRefGoogle Scholar
  15. Junquera J., Ghosez P., (2003). Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422:506–509CrossRefGoogle Scholar
  16. Kim Y.S., Kim D.H., Kim J.D., Chang Y.J., Noh T.W., Kong J.H., Char K., Park Y.D., Bu S.D., Yoon J.G., Chung J.S., (2005). Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl. Phys. Lett. 86:102907CrossRefGoogle Scholar
  17. Kreisel J., Glazer A.M., (2000). Estimation of the compressibility of Na0.5Bi0.5TiO3 and related perovskite-type titanates. J. Phys.: Condens. Matter 12:9689–9698CrossRefGoogle Scholar
  18. Kretschmer R., Binder K., (1979). Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys. Rev. B 20:1065–1076CrossRefGoogle Scholar
  19. Lee T., Aksay I.A., (2001). Hierarchical structure-ferroelectricity relationship of barium titanate particles. Cryst. Growth Design 5:401–419CrossRefGoogle Scholar
  20. Li Y.L., Hu S.Y., Liu Z.K., Chen Z.K., (2001). Phase-field model of domain structure in ferroelectric thin films. Appl. Phys. Lett. 78:3878–3880CrossRefGoogle Scholar
  21. Lichtensteiger C., Triscone J.M., Junquera J., Ghosez P., (2005). Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94:047603CrossRefGoogle Scholar
  22. Lines M.E., 1969. Statistical theory for displacement ferroelectrics. Phys. Rev. 177, 797–812. Statistical theory for displacement ferroelectrics. II. Specific-heat and soft-mode-frequency calculations. 177, 812–818; 1969. Statistical theory for displacement ferroelectrics. III. Comparison with experiment for lithium tantalate. 177, 819–829Google Scholar
  23. Liu G., Nan C.W., (2005). Thickness dependence of polarization in ferroelectric perovskite thin films. J. Phys. D: Appl. Phys. 38:584–589CrossRefGoogle Scholar
  24. Mitsui T., Tatsuzaki I., Nakamura E., (1976). An Introduction to the Physics of Ferroelectrics. Gordon and Breach, New YorkGoogle Scholar
  25. Pertsev N.A., Zembilgotov A.G., Tagantsev A.K., (1998). Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80:1988–1991CrossRefGoogle Scholar
  26. Pertsev N.A., Tagantsev A.K., Setter N., (2000). Phase transition and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61:R825–829CrossRefGoogle Scholar
  27. Rarnesh R., Schlom D.G., (2002). Orienting Ferroelectric Films. Science 296:1975–1976CrossRefGoogle Scholar
  28. Rossetti Jr G.A., Cross L.E., Kushida K., (1991). Stress induced shift of the Curie point in epitaxial PbTiO3 thin films. Appl. Phys. Lett. 59:2524–2526CrossRefGoogle Scholar
  29. Shaw T.M., Trolier-McKinstry S., McIntyre P.C., (2000). The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30:263–298CrossRefGoogle Scholar
  30. Shi F.G., (1994). Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9:1307–1313Google Scholar
  31. Speck J.S., Pompe W., (1994). Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory. J. Appl. Phys. 76:466–476CrossRefGoogle Scholar
  32. Streiffer S.K., Eastman J.A., Fong D.D., Thompson G., Munkholm A., Ramana Murty M.V., Auciello O., Bai G.R., Stephenson G.B., (2002). Observation of nanoscale 180? stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89:67601CrossRefGoogle Scholar
  33. Strukov B.A., Davitadze S.T., Kravchun S.N., Taraskin S.A., Goltzman M., Lemanov V.V., Shulman S.G., (2003). Specific heat and heat conductivity of BaTiO3 polycrystalline films in the thickness range 20–1100 nm. J. Phys.: Condens. Matter 15:4331–4340CrossRefGoogle Scholar
  34. Sun C.Q., Zhong W.H., Li S., Tay B.K., Bai H.L., Jiang E.Y., (2004). Coordination imperfection suppressed phase stability of ferromagnetic ferroelectric, and superconductive nanosolids. J. Phys. Chem. B 108:1080–1084CrossRefGoogle Scholar
  35. Sy H.K. (1993) Surface modification in ferroelectric transitions. J. Phys.: Condes. Matter 5: 1213–1220CrossRefGoogle Scholar
  36. Valasek J. (1921) Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 17: 475–481CrossRefGoogle Scholar
  37. Wang B. & C.H. Woo 2004. The order of transition of a ferroelectric thin film on a compliant substrate. Acta Mater. 52, 5639–5644Google Scholar
  38. Wang B. & C.H. Woo 2005. Curie temperature and critical thickness of ferroelectric thin films. J. Appl. Phys. 97, 84109–84110Google Scholar
  39. Wang C.L., Zhong W.L., Zhang P.L. (1992) The Curie temperature of ultra-thin ferroelectric films. J. Phys.: Condens. Matter 4: 4743–4749CrossRefGoogle Scholar
  40. Wang Y.G., Zhong W.L., Zhang P.L. (1996) Surface effects and size effects on ferroelectrics with a first-order phase transition. Phys. Rev. B 53: 11439–11443CrossRefGoogle Scholar
  41. Weast R.C., Astle M.J., Beyer W.H. (1988) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, p. B-195, 69th editionGoogle Scholar
  42. Yang C.C., Jiang Q. (2005) Size and interface effects on critical temperature of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater. 53: 3305–3311CrossRefGoogle Scholar
  43. Yano Y., Lijima K., Daitoh Y., Terashima T., Bando Y., Watanabe Y., Kasatani H., Terauchi H. (1994) Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation. J. Appl. Phys. 76: 7833–7838CrossRefGoogle Scholar
  44. Zembilgotov A.G., Pertsev N.A., Kohlstedt H., Waser R., (2002). Ultrathin epitaxial ferroelectric films grown on compressive substrates: Competition between the surface and strain effects. J. Appl. Phys. 91: 2247–2254CrossRefGoogle Scholar
  45. Zhang J., Yin Z., Zhang M.S., Scott J.F., (2001). Size-induced phase transition in stress-induced ferroelectric thin films. Solid State Commun. 118: 241–246CrossRefGoogle Scholar
  46. Zhao Z., Buscaglia V., Viviani M., Buscaglia M.T., Mitoseriu L., Testino A., Nygren M., Johnsson M., Nanni P., (2004). Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70: 024107CrossRefGoogle Scholar
  47. Zhong W.L., Jiang B., Zhang P.L., Ma J.M., Cheng H.M., Yang Z.H., Li L.X., (1993). Phase transition in PbTiO3 ultrafine particles of different sizes. J. Phys.: Condens. Matter 5:2619–2624CrossRefGoogle Scholar
  48. Zhong W.L., Wang Y.G., Zhang P.L. and Qu B.D., (1994). Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50:698–703CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Key Laboratory of Automobile Materials, Minstry of Education and Department of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations