Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 951–958 | Cite as

Sonochemically synthesized core-shell structured Au–Pd nanoparticles supported on γ-Fe2O3 particles

  • Hiroaki Nitani
  • Masato Yuya
  • Takahiro Ono
  • Takashi Nakagawa
  • Satoshi Seino
  • Kenji Okitsu
  • Yoshiteru Mizukoshi
  • Shuichi Emura
  • Takao A. Yamamoto
Article

Abstract

A sample of Au–Pd bimetallic nanoparticles supported on γ-Fe2O3 was synthesized in a sonochemically one-pot process. The structural analyses of the synthesized sample were performed by the techniques of X-ray Absorption Fine Structure (XAFS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and UV–vis spectrometry. Results indicated that the synthesized sample formed a core-shell structure in which a gold core was surrounded by a thin palladium shell. The reaction rate constant for the hydrogenation of cyclohexene of the present sample showed higher value than that of Pd nanoparticles supported on γ-Fe2O3 and core-shell structured Au–Pd nanoparticles supported on SiO2. The present sample is a promising catalyst material which has a high catalytic activity.

Keywords

nanocomposit catalyst nanostructure EXAFS sonochemically synthesis colloids three-phase mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Emeritus Prof. T. Tabata (Osaka Prefecture University) for his critical reading of the manuscript.

References

  1. Choudhary T.V., C. Sivadinarayana, C.C. Chusuei, A.K. Datye, J.P. Facler Jr., & D.W. Goodman, 2002. CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex. J. Catal. 207, 247–255.CrossRefGoogle Scholar
  2. Creighton J.A. & D.G. Eadon, 1991. Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87, 3881–3891.CrossRefGoogle Scholar
  3. Lee P.A., P.H. Citrin, P. Eisenberger & B.M. Kincaid, 1981. Extended X-ray absorption fine structure – Its strengths and limitations as a structural rool. Rev. Mod. Phys. 53, 769–806.CrossRefGoogle Scholar
  4. Mizukoshi Y., T. Fujimoto, Y. Nagata, R. Oshima & Y. Maeda, 2000. Characterization of catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by sonochemical method. J. Phys. Chem. B 104, 6028–6032.CrossRefGoogle Scholar
  5. Mizukoshi Y., K. Okitsu, Y. Maeda, T.A. Yamamoto, R. Oshima & Y. Nagata, 1997. Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J. Phys. Chem. B 101, 7033–7037.CrossRefGoogle Scholar
  6. Nakagawa T., H. Nitani, S. Tanabe, K. Okitsu & T.A. Yamamoto, 2005. Structural analysis of sonochemically prepared Au/Pd nanoparticles dispersed in porous silica matrix. Ultrasonics Sonochem. 12, 249–254.CrossRefGoogle Scholar
  7. Naruya M. & M. Date, 2001. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 222, 427–437.CrossRefGoogle Scholar
  8. Newville M., 1995. The program documentation of UWXAFS 3.0 package: FEFFIT 2.32. The UWXAFS Project, University of Washington, 16.Google Scholar
  9. Newville M., B. Ravel, D. Haskel, J.J. Rehr, E.A. Stern & Y.␣Yacoby, 1995. Analysis of multiple-scattering XAFS data using theoretical standards. Physica B 208&209, 154–156.Google Scholar
  10. Okitsu K., H. Bandow, Y. Maeda & Y. Nagata, 1996a. Sonochemical preparation of ultrafine palladium particles. Chem. Mater. 8, 315–317.CrossRefGoogle Scholar
  11. Okitsu K., Y. Mizukoshi, H. Bandow, Y. Maeda, T.A. Yamamoto & Y. Nagata, 1996b. Formation of noble metal particles by ultrasonic irradiation. Ultrasonics Sonochem. 3, S249–S251.CrossRefGoogle Scholar
  12. Okitsu K., M. Murakami, S. Tanabe & H. Matsumoto, 2000. Catalytic behavior of au core/pd shell bimetallic nanoparticles on silica prepared by sonochemical and sol-gel processes. Chem. Lett. 29, 1336–1337.Google Scholar
  13. Okitsu K., S. Nagaoka, S. Tanabe, H. Matsumoto, Y. Mizukoshi & Y. Nagata, 1999. Sonochemical preparation of size-controlled palladium nanoparticles on alumina surface. Chem. Lett. 28, 271–272.Google Scholar
  14. Seino S., T. Kinoshita, Y. Otome, T. Nakagawa, K. Okitsu, Y. Mizukoshi, T. Nakayama, T. Sekino, K. Niihara & T.A. Yamamoto, 2005. Magnetic separation of amino acids by gold/iron-oxide composite nanoparticles synthesized by gamma-ray irradiation. J. Magn. Magn. Mater. 293, 106–110.CrossRefGoogle Scholar
  15. Teo B.K., 1986. EXAFS: Basic Principles and Data Analysis. Springer-Verlag, Berlin, 1.Google Scholar
  16. Ung T., L.M. Liz-Marzan & P. Mulvaney, 2002. Gold nanoparticle thin films. Colloids Surf. A 202, 119–126.CrossRefGoogle Scholar
  17. Zabinsky S.I., J.J. Rehr, & A. Ankudinov, 1995. Multiple-scattering Calculations of X-ray –absorption Spectra. Phys. Rev. B 52:2995–3009CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hiroaki Nitani
    • 1
  • Masato Yuya
    • 1
  • Takahiro Ono
    • 1
  • Takashi Nakagawa
    • 1
  • Satoshi Seino
    • 2
  • Kenji Okitsu
    • 3
  • Yoshiteru Mizukoshi
    • 4
  • Shuichi Emura
    • 2
  • Takao A. Yamamoto
    • 1
  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan
  3. 3.Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan
  4. 4.Faculty of EngineeringNagasaki UniversityNagasakiJapan

Personalised recommendations