Skip to main content
Log in

Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Tin dioxide nanoparticles of different sizes and platinum doping contents were synthesized in one step using the flame spray pyrolysis (FSP) technique. The particles were used to fabricate semiconducting gas sensors for low level CO detection, i.e. with a CO gas concentration as low as 5 ppm in the absence and presence of water. Post treatment of the SnO2 nanoparticles was not needed enabling the investigation of the metal oxide particle size effect. Gas sensors based on tin dioxide with a primary particle size of 10 nm showed signals one order of magnitude higher than the ones corresponding to the primary particle size of 330 nm. In situ platinum functionalization of the SnO2 during FSP synthesis resulted in higher sensor responses for the 0.2 wt% Pt-content than for the 2.0 wt% Pt. The effect is mainly attributed to catalytic consumption of CO and to the associated reduced sensor response. Pure and functionalized tin dioxide nanoparticles have been characterized by Brunauer, Emmett and Teller (BET) surface area determination, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) while the platinum oxidation state and dispersion have been investigated by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). The sensors showed high stability (up to 20 days) and are suitable for low level CO detection: <10 ppm according to European and 50 ppm according to US legislation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barsan N., Schweizer-Berberich M., and Gopel W. (1999). Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius Journal of Analytical Chemistry 365(4):287–304

    Article  CAS  Google Scholar 

  • Barsan N., and Weimar U. (2001). Conduction model of metal oxide gas sensors. Journal of Electroceramics 7(3):143–167

    Article  CAS  Google Scholar 

  • Barsan N., and Weimar U. (2003). Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. Journal of Physics-Condensed Matter 15(20): R813–R839

    Article  CAS  Google Scholar 

  • Bazin D., Dexpert H., Lynch J., and Bournonville J.P. (1999). XAS of electronic state correlations during the reduction of the bimetallic PtRe/Al2O3 system. J. Synchr. Rad. 7:465

    Article  Google Scholar 

  • Bolzan A.A., Fong C., Kennedy B.J., and Howard C.J. (1997). Structural studies of rutile-type metal dioxides. Acta Crystallographica Section B-Structural Science 53(3):373–380

    Article  Google Scholar 

  • Boulahouache A., Kons G., Lintz H.G., and Schulz P. (1992). Oxidation of Carbon-Monoxide on Platinum Tin Dioxide Catalysts at Low-Temperatures. Applied Catalysis a-General 91(2):115–123

    Article  CAS  Google Scholar 

  • Cabot A. (2004). Influence of Catalytic Additives on Metal Oxide Nanoparticles for Gas Sensing Applications. Universitat de Barcelona, Barcelona

    Google Scholar 

  • Cabot A., Arbiol J., Morante J.R., Weimar U., Barsan N., and Gopel W. (2000). Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sensors and Actuators B-Chemical 70(1–3):87–100

    Article  Google Scholar 

  • Cabot A., Dieguez A., Romano-Rodriguez A., Morante J.R. and Barsan N. (2001). Influence of the catalytic introduction procedure on the nano- SnO2 gas sensor performances – Where and how stay the catalytic atoms?. Sensors and Actuators B-Chemical 79(2–3):98–106

    Article  Google Scholar 

  • Cabot A., Vila A., and Morante J.R. (2002). Analysis of the catalytic activity and electrical characteristics of different modified SnO2 layers for gas sensors. Sensors and Actuators B-Chemical 84(1):12–20

    Article  Google Scholar 

  • Cheary R.W., and Coelho A.A. (1998). Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. Journal of Applied Crystallography 31:851–861

    Article  CAS  Google Scholar 

  • Dieguez A., Vila A., Cabot A., Romano-Rodriguez A., Morante J.R., Kappler J., Barsan N., Weimar U., and Gopel W. (2000). Influence on the gas sensor performances of the metal chemical states introduced by impregnation of calcinated SnO2 sol-gel nanocrystals. Sensors and Actuators B-Chemical 68(1–3):94–99

    Article  Google Scholar 

  • EN. 2000. Directive 2000/69/EC of the European parliament and of the council. Official Journal of the European Commission, L313/12

  • Eranna G., Joshi B.C., Runthala D.P., and Gupta R.P. (2004). Oxide materials for development of integrated gas sensors – A comprehensive review. Critical Reviews in Solid State and Materials Sciences 29(3–4):111–188

    Article  CAS  Google Scholar 

  • Gaidi M., Hazemann J.L., Matko I., Chenevier B., Rumyantseva M., Gaskov A., and Labeau M. (2000). Role of Pt aggregates in Pt/SnO2 thin films used as gas sensors – Investigations of the catalytic effect. Journal of the Electrochemical Society 147(8):3131–3138

    Article  CAS  Google Scholar 

  • Gaidi M., Labeau M., Chenevier B., and Hazemann J.L. (1998). In-situ EXAFS analysis of the local environment of Pt particles incorporated in thin films of SnO2 semi-conductor oxide used as gas-sensors. Sensors and Actuators B-Chemical 48(1–3):277–284

    Article  Google Scholar 

  • Grandjean D., Benfield R.E., Nayral C., Maisonnat A., and Chaudret B. (2004). EXAFS and XANES Study of a Pure and Pd Doped Novel Sn/SnOx Nanomaterial. Journal of Physical Chemistry B 108(26):8876–8887

    Article  CAS  Google Scholar 

  • Grass K. & H.G. Lintz, 1995. Tin(IV)oxide supported noble metal catalysts for the carbon monoxide oxidation at low temperatures. Preparation of Catalysts VI: Studies in surface science and catalysis, Elsevier Science Publ., Amsterdam, pp. 1111–1119

  • Grass K., and Lintz H.G. (1997a). The kinetics of carbon monoxide oxidation on tin(IV) oxide supported platinum catalysts. Journal of Catalysis 172(2):446–452

    Article  CAS  Google Scholar 

  • Grass K., and Lintz H.G. (1997b). Oxidation of carbon monoxide over platinum–tin(IV) oxide catalysts: an example of spillover catalysis?. Spillover and Migration of Surface Species on Catalysts 112:135–142

    Article  CAS  Google Scholar 

  • Grunwaldt J.D., Gobel U., and Baiker A. (1997). Preparation and characterization of thin TiO2-films on gold/mica. Fresenius Journal of Analytical Chemistry 358(1–2):96–100

    Article  CAS  Google Scholar 

  • Iwasawa Y. 1996. Characterization and Chemical Design of Oxide Surfaces. 11th International Congress on Catalysis, Baltimore, pp. 21–34

  • Johannessen T., and Koutsopoulos S. (2002). One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation – A possible alternative to traditional methods for parallel screening. Journal of Catalysis 205(2):404–408

    Article  CAS  Google Scholar 

  • Kappen P., Trøger L., Materlik G., Reckleben C., Hansen K., Grunwaldt J.-D., and Clausen B.S. (2002). Silicon drift detectors as a tool for time-resolved fluorescence XAFS on low-concentrated samples in catalysis. J. Sync. Rad. 9:246

    Article  CAS  Google Scholar 

  • Kappler J. (2001). Characterization of high-performance SnO2 gas sensors for CO detection by in-situ techniques. Saker Verlag, Aachen

    Google Scholar 

  • Kappler J., Barsan N., Weimar U., Dieguez A., Alay J.L., Romano-Rodriguez A., Morante J.R., and Gopel W. (1998). Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius Journal of Analytical Chemistry 361(2):110–114

    Article  CAS  Google Scholar 

  • Kappler J., Tomescu A., Barsan N., and Weimar U. (2001). CO consumption of Pd doped SnO2 based sensors. Thin Solid Films 391(2):186–191

    Article  CAS  Google Scholar 

  • Kim K.S., Winograd N., and Davis R.E. (1971). Electron Spectroscopy of Platinum-Oxygen Surfaces and Application to Electrochemical Studies. Journal of the American Chemical Society 93(23):6296–6297

    Article  CAS  Google Scholar 

  • Mädler L., Kammler H.K., Mueller R., and Pratsinis S.E. (2002a). Controlled synthesis of nanostructured particles by flame spray pyrolysis. Journal of Aerosol Science 33(2):369–389

    Article  Google Scholar 

  • Mädler L., and Pratsinis S.E. (2002). Bismuth oxide nanoparticles by flame spray pyrolysis. Journal of the American Ceramic Society 85(7):1713–1718

    Article  Google Scholar 

  • Mädler L., Stark W.J., and Pratsinis S.E. (2002b). Flame-made ceria nanoparticles. Journal of Materials Research 17(6):1356–1362

    Article  Google Scholar 

  • Mädler L., Stark W.J., and Pratsinis S.E. (2003). Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2. Journal of Materials Research 18(1):115–120

    Article  Google Scholar 

  • Matko I., Gaidi M., Chenevier B., Charai A., Saikaly W., and Labeau M. (2002). Pt doping of SnO2 thin films – A transmission electron microscopy analysis of the porosity evolution. Journal of the Electrochemical Society 149(8):H153–H158

    Article  CAS  Google Scholar 

  • Matko I., Gaidi M., Hazemann J.L., Chenevier B., and Labeau M. (1999). Electrical properties under polluting gas (CO) of Pt- and Pd-doped polycrystalline SnO2 thin films: analysis of the metal aggregate size effect. Sensors and Actuators B-Chemical 59(2–3):210–215

    Article  Google Scholar 

  • Matsushima S., Teraoka Y., Miura N., and Yamazoe N. (1988). Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors. Japanese Journal of Applied Physics, Part 1: Regular Papers, Short Notes & Review Papers 27(10):1798–802

    CAS  Google Scholar 

  • Muilenberg G.E. (1979). Handbook of Photoelectron Spectroscopy, Perkin-Elmer Corp. Eden Prairie, Minnesota

    Google Scholar 

  • Pearce T.C., Schiffman S.S., Nagle H.T., and Gardner J.W. (2004). Handbook of Machine Olfaction: Electronic Nose Technology. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Ressler T. (1998). WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchr. Rad. 5:118

    Article  CAS  Google Scholar 

  • Rothschild A., and Komem Y. (2004). The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. Journal of Applied Physics 95(11):6374–6380

    Article  CAS  Google Scholar 

  • Sahm T., A. Gurlo, N. Barsan & U. Weimar, Properties of indium oxide semiconducting sensors deposited by different techniques. J. Particulate Sci. (submitted)

  • Sahm T., A. Gurlo, N. Bârsan, U. Weimar & L. Mädler, 2005. Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 490(1), 43–47

    Google Scholar 

  • Sahm T., Mädler L., Gurlo A., Barsan N., Pratsinis S.E., and Weimar U. (2004). Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sensors and Actuators B-Chemical 98(2–3):148–153

    Article  CAS  Google Scholar 

  • Schweizer-Berberich M., Zheng J.G., Weimar U., Gopel W., Barsan N., Pentia E., and Tomescu A. (1996). The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sensors and Actuators B-Chemical 31(1–2):71–75

    Article  Google Scholar 

  • Stark W.J., J.-D. Grunwaldt, M. Maciejewski, S.E. Pratsinis & A. Baiker, 2005. Improved thermal stability of flame-made pt/ceria/zirconia for low-temperature oxygen exchange. Chem. Mat. 17:3352–3359

    Article  CAS  Google Scholar 

  • Strobel R., Stark W.J., Mädler L., Pratsinis S.E., and Baiker A. (2003). Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. Journal of Catalysis 213(2):296–304

    Article  CAS  Google Scholar 

  • Tani T., Mädler L., and Pratsinis S.E. (2002). Homogeneous ZnO nanoparticles by flame spray pyrolysis. Journal of Nanoparticle Research 4(4):337–343

    Article  CAS  Google Scholar 

  • Xu C., Tamaki J., Miura N., and Yamazoe N. (1991). Grain-Size Effects on Gas Sensitivity of Porous SnO2-Based Elements. Sensors and Actuators B-Chemical 3(2):147–155

    Article  Google Scholar 

  • Yamazoe N. (1991). New approaches for improving semiconductor gas sensors. Sensors and Actuators, B: Chemical B5(1–4):7–19

    Article  Google Scholar 

  • Yang J.C., Kim Y.C., Shul Y.G., Shin C.H., and Lee T.K. (1997). Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts. Applied Surface Science 121:525–529

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Frank Krumeich for providing the HRTEM, STEM and EDX analyses and Dr. Stefan Mangold for assistance in using beam line ANKA-XAS and the fluorescence detection at the Synchrotron Radiation Facility ANKA of Forschungszentrum Karlsruhe. The EXAFS studies were supported within the project XAS_03_030 by the European Community-Research Infrastructure Action under the FP6: “Structuring the European Research Area”. (Integrating Activity on Synchrotron and Free Electron Laser Science (IA-SFS) RII3-CT-2004-506008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mädler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mädler, L., Sahm, T., Gurlo, A. et al. Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res 8, 783–796 (2006). https://doi.org/10.1007/s11051-005-9029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9029-6

Key words

Navigation