Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 783–796 | Cite as

Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles

  • L. Mädler
  • T. Sahm
  • A. Gurlo
  • J.-D. Grunwaldt
  • N. Barsan
  • U. Weimar
  • S.E. Pratsinis


Tin dioxide nanoparticles of different sizes and platinum doping contents were synthesized in one step using the flame spray pyrolysis (FSP) technique. The particles were used to fabricate semiconducting gas sensors for low level CO detection, i.e. with a CO gas concentration as low as 5 ppm in the absence and presence of water. Post treatment of the SnO2 nanoparticles was not needed enabling the investigation of the metal oxide particle size effect. Gas sensors based on tin dioxide with a primary particle size of 10 nm showed signals one order of magnitude higher than the ones corresponding to the primary particle size of 330 nm. In situ platinum functionalization of the SnO2 during FSP synthesis resulted in higher sensor responses for the 0.2 wt% Pt-content than for the 2.0 wt% Pt. The effect is mainly attributed to catalytic consumption of CO and to the associated reduced sensor response. Pure and functionalized tin dioxide nanoparticles have been characterized by Brunauer, Emmett and Teller (BET) surface area determination, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) while the platinum oxidation state and dispersion have been investigated by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). The sensors showed high stability (up to 20 days) and are suitable for low level CO detection: <10 ppm according to European and 50 ppm according to US legislation, respectively.

Key words

gas sensor CO detection flame spray pyrolysis tin dioxide nanoparticles platinum functionalization XPS/EXAFS combustion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Dr. Frank Krumeich for providing the HRTEM, STEM and EDX analyses and Dr. Stefan Mangold for assistance in using beam line ANKA-XAS and the fluorescence detection at the Synchrotron Radiation Facility ANKA of Forschungszentrum Karlsruhe. The EXAFS studies were supported within the project XAS_03_030 by the European Community-Research Infrastructure Action under the FP6: “Structuring the European Research Area”. (Integrating Activity on Synchrotron and Free Electron Laser Science (IA-SFS) RII3-CT-2004-506008).


  1. Barsan N., Schweizer-Berberich M., and Gopel W. (1999). Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius Journal of Analytical Chemistry 365(4):287–304CrossRefGoogle Scholar
  2. Barsan N., and Weimar U. (2001). Conduction model of metal oxide gas sensors. Journal of Electroceramics 7(3):143–167CrossRefGoogle Scholar
  3. Barsan N., and Weimar U. (2003). Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. Journal of Physics-Condensed Matter 15(20): R813–R839CrossRefGoogle Scholar
  4. Bazin D., Dexpert H., Lynch J., and Bournonville J.P. (1999). XAS of electronic state correlations during the reduction of the bimetallic PtRe/Al2O3 system. J. Synchr. Rad. 7:465CrossRefGoogle Scholar
  5. Bolzan A.A., Fong C., Kennedy B.J., and Howard C.J. (1997). Structural studies of rutile-type metal dioxides. Acta Crystallographica Section B-Structural Science 53(3):373–380CrossRefGoogle Scholar
  6. Boulahouache A., Kons G., Lintz H.G., and Schulz P. (1992). Oxidation of Carbon-Monoxide on Platinum Tin Dioxide Catalysts at Low-Temperatures. Applied Catalysis a-General 91(2):115–123CrossRefGoogle Scholar
  7. Cabot A. (2004). Influence of Catalytic Additives on Metal Oxide Nanoparticles for Gas Sensing Applications. Universitat de Barcelona, BarcelonaGoogle Scholar
  8. Cabot A., Arbiol J., Morante J.R., Weimar U., Barsan N., and Gopel W. (2000). Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sensors and Actuators B-Chemical 70(1–3):87–100CrossRefGoogle Scholar
  9. Cabot A., Dieguez A., Romano-Rodriguez A., Morante J.R. and Barsan N. (2001). Influence of the catalytic introduction procedure on the nano- SnO2 gas sensor performances – Where and how stay the catalytic atoms?. Sensors and Actuators B-Chemical 79(2–3):98–106CrossRefGoogle Scholar
  10. Cabot A., Vila A., and Morante J.R. (2002). Analysis of the catalytic activity and electrical characteristics of different modified SnO2 layers for gas sensors. Sensors and Actuators B-Chemical 84(1):12–20CrossRefGoogle Scholar
  11. Cheary R.W., and Coelho A.A. (1998). Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. Journal of Applied Crystallography 31:851–861CrossRefGoogle Scholar
  12. Dieguez A., Vila A., Cabot A., Romano-Rodriguez A., Morante J.R., Kappler J., Barsan N., Weimar U., and Gopel W. (2000). Influence on the gas sensor performances of the metal chemical states introduced by impregnation of calcinated SnO2 sol-gel nanocrystals. Sensors and Actuators B-Chemical 68(1–3):94–99CrossRefGoogle Scholar
  13. EN. 2000. Directive 2000/69/EC of the European parliament and of the council. Official Journal of the European Commission, L313/12Google Scholar
  14. Eranna G., Joshi B.C., Runthala D.P., and Gupta R.P. (2004). Oxide materials for development of integrated gas sensors – A comprehensive review. Critical Reviews in Solid State and Materials Sciences 29(3–4):111–188CrossRefGoogle Scholar
  15. Gaidi M., Hazemann J.L., Matko I., Chenevier B., Rumyantseva M., Gaskov A., and Labeau M. (2000). Role of Pt aggregates in Pt/SnO2 thin films used as gas sensors – Investigations of the catalytic effect. Journal of the Electrochemical Society 147(8):3131–3138CrossRefGoogle Scholar
  16. Gaidi M., Labeau M., Chenevier B., and Hazemann J.L. (1998). In-situ EXAFS analysis of the local environment of Pt particles incorporated in thin films of SnO2 semi-conductor oxide used as gas-sensors. Sensors and Actuators B-Chemical 48(1–3):277–284CrossRefGoogle Scholar
  17. Grandjean D., Benfield R.E., Nayral C., Maisonnat A., and Chaudret B. (2004). EXAFS and XANES Study of a Pure and Pd Doped Novel Sn/SnOx Nanomaterial. Journal of Physical Chemistry B 108(26):8876–8887CrossRefGoogle Scholar
  18. Grass K. & H.G. Lintz, 1995. Tin(IV)oxide supported noble metal catalysts for the carbon monoxide oxidation at low temperatures. Preparation of Catalysts VI: Studies in surface science and catalysis, Elsevier Science Publ., Amsterdam, pp. 1111–1119Google Scholar
  19. Grass K., and Lintz H.G. (1997a). The kinetics of carbon monoxide oxidation on tin(IV) oxide supported platinum catalysts. Journal of Catalysis 172(2):446–452CrossRefGoogle Scholar
  20. Grass K., and Lintz H.G. (1997b). Oxidation of carbon monoxide over platinum–tin(IV) oxide catalysts: an example of spillover catalysis?. Spillover and Migration of Surface Species on Catalysts 112:135–142CrossRefGoogle Scholar
  21. Grunwaldt J.D., Gobel U., and Baiker A. (1997). Preparation and characterization of thin TiO2-films on gold/mica. Fresenius Journal of Analytical Chemistry 358(1–2):96–100CrossRefGoogle Scholar
  22. Iwasawa Y. 1996. Characterization and Chemical Design of Oxide Surfaces. 11th International Congress on Catalysis, Baltimore, pp. 21–34Google Scholar
  23. Johannessen T., and Koutsopoulos S. (2002). One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation – A possible alternative to traditional methods for parallel screening. Journal of Catalysis 205(2):404–408CrossRefGoogle Scholar
  24. Kappen P., Trøger L., Materlik G., Reckleben C., Hansen K., Grunwaldt J.-D., and Clausen B.S. (2002). Silicon drift detectors as a tool for time-resolved fluorescence XAFS on low-concentrated samples in catalysis. J. Sync. Rad. 9:246CrossRefGoogle Scholar
  25. Kappler J. (2001). Characterization of high-performance SnO2 gas sensors for CO detection by in-situ techniques. Saker Verlag, AachenGoogle Scholar
  26. Kappler J., Barsan N., Weimar U., Dieguez A., Alay J.L., Romano-Rodriguez A., Morante J.R., and Gopel W. (1998). Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius Journal of Analytical Chemistry 361(2):110–114CrossRefGoogle Scholar
  27. Kappler J., Tomescu A., Barsan N., and Weimar U. (2001). CO consumption of Pd doped SnO2 based sensors. Thin Solid Films 391(2):186–191CrossRefGoogle Scholar
  28. Kim K.S., Winograd N., and Davis R.E. (1971). Electron Spectroscopy of Platinum-Oxygen Surfaces and Application to Electrochemical Studies. Journal of the American Chemical Society 93(23):6296–6297CrossRefGoogle Scholar
  29. Mädler L., Kammler H.K., Mueller R., and Pratsinis S.E. (2002a). Controlled synthesis of nanostructured particles by flame spray pyrolysis. Journal of Aerosol Science 33(2):369–389CrossRefGoogle Scholar
  30. Mädler L., and Pratsinis S.E. (2002). Bismuth oxide nanoparticles by flame spray pyrolysis. Journal of the American Ceramic Society 85(7):1713–1718CrossRefGoogle Scholar
  31. Mädler L., Stark W.J., and Pratsinis S.E. (2002b). Flame-made ceria nanoparticles. Journal of Materials Research 17(6):1356–1362CrossRefGoogle Scholar
  32. Mädler L., Stark W.J., and Pratsinis S.E. (2003). Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2. Journal of Materials Research 18(1):115–120CrossRefGoogle Scholar
  33. Matko I., Gaidi M., Chenevier B., Charai A., Saikaly W., and Labeau M. (2002). Pt doping of SnO2 thin films – A transmission electron microscopy analysis of the porosity evolution. Journal of the Electrochemical Society 149(8):H153–H158CrossRefGoogle Scholar
  34. Matko I., Gaidi M., Hazemann J.L., Chenevier B., and Labeau M. (1999). Electrical properties under polluting gas (CO) of Pt- and Pd-doped polycrystalline SnO2 thin films: analysis of the metal aggregate size effect. Sensors and Actuators B-Chemical 59(2–3):210–215CrossRefGoogle Scholar
  35. Matsushima S., Teraoka Y., Miura N., and Yamazoe N. (1988). Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors. Japanese Journal of Applied Physics, Part 1: Regular Papers, Short Notes & Review Papers 27(10):1798–802Google Scholar
  36. Muilenberg G.E. (1979). Handbook of Photoelectron Spectroscopy, Perkin-Elmer Corp. Eden Prairie, MinnesotaGoogle Scholar
  37. Pearce T.C., Schiffman S.S., Nagle H.T., and Gardner J.W. (2004). Handbook of Machine Olfaction: Electronic Nose Technology. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  38. Ressler T. (1998). WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchr. Rad. 5:118CrossRefGoogle Scholar
  39. Rothschild A., and Komem Y. (2004). The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. Journal of Applied Physics 95(11):6374–6380CrossRefGoogle Scholar
  40. Sahm T., A. Gurlo, N. Barsan & U. Weimar, Properties of indium oxide semiconducting sensors deposited by different techniques. J. Particulate Sci. (submitted)Google Scholar
  41. Sahm T., A. Gurlo, N. Bârsan, U. Weimar & L. Mädler, 2005. Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 490(1), 43–47Google Scholar
  42. Sahm T., Mädler L., Gurlo A., Barsan N., Pratsinis S.E., and Weimar U. (2004). Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sensors and Actuators B-Chemical 98(2–3):148–153CrossRefGoogle Scholar
  43. Schweizer-Berberich M., Zheng J.G., Weimar U., Gopel W., Barsan N., Pentia E., and Tomescu A. (1996). The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sensors and Actuators B-Chemical 31(1–2):71–75CrossRefGoogle Scholar
  44. Stark W.J., J.-D. Grunwaldt, M. Maciejewski, S.E. Pratsinis & A. Baiker, 2005. Improved thermal stability of flame-made pt/ceria/zirconia for low-temperature oxygen exchange. Chem. Mat. 17:3352–3359CrossRefGoogle Scholar
  45. Strobel R., Stark W.J., Mädler L., Pratsinis S.E., and Baiker A. (2003). Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. Journal of Catalysis 213(2):296–304CrossRefGoogle Scholar
  46. Tani T., Mädler L., and Pratsinis S.E. (2002). Homogeneous ZnO nanoparticles by flame spray pyrolysis. Journal of Nanoparticle Research 4(4):337–343CrossRefGoogle Scholar
  47. Xu C., Tamaki J., Miura N., and Yamazoe N. (1991). Grain-Size Effects on Gas Sensitivity of Porous SnO2-Based Elements. Sensors and Actuators B-Chemical 3(2):147–155CrossRefGoogle Scholar
  48. Yamazoe N. (1991). New approaches for improving semiconductor gas sensors. Sensors and Actuators, B: Chemical B5(1–4):7–19CrossRefGoogle Scholar
  49. Yang J.C., Kim Y.C., Shul Y.G., Shin C.H., and Lee T.K. (1997). Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts. Applied Surface Science 121:525–529CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • L. Mädler
    • 1
    • 4
  • T. Sahm
    • 2
  • A. Gurlo
    • 2
  • J.-D. Grunwaldt
    • 3
  • N. Barsan
    • 2
  • U. Weimar
    • 2
  • S.E. Pratsinis
    • 1
  1. 1.Particle Technology LaboratorySwiss Federal Institute of Technology (ETH) ZurichZürichSwitzerland
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of TübingenTübingenGermany
  3. 3.Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) ZurichZürichSwitzerland
  4. 4.Department of Chemical EngineeringUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations