Skip to main content
Log in

The Microwave plasma process – a versatile process to synthesise nanoparticulate materials

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The microwave plasma process inherently produces nanoparticulate powders with very narrow particle size distribution. During synthesis, the particles carry electric charges of equal sign. Therefore, by electrostatic repulsion, particle growth is reduced and agglomeration thwarted. This is shown by gas kinetic considerations and experimental results. Furthermore, this process allows coating of the particles with organic or inorganic phases, reducing interaction of different particles. This makes it possible to technically exploit properties, characteristic for isolated particles. Additionally, the coating process allows the combination of different properties such as superparamagnetism and luminescence, as it is demonstrated in different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albe V., Jouanin C. and Bertho D., (1998). Phys. Rev. B 58: 4713

    Article  CAS  Google Scholar 

  • Brus L.E., (1984). J. Chem. Phys. 80: 4403

    Article  CAS  Google Scholar 

  • Fu H. and Zunger A., (1997). Phys. Rev. B 55: 1642

    Article  CAS  Google Scholar 

  • Jacobs, I.S. & C.P. Bean, 1963. In: Rado G.T. & Suhl H. eds. Magnetism. Academic Press, New York, 271ff pp.

  • Lamparth I., Szabó D.V. and Vollath D., (2002). Marcomolecular Symposia 181: 107

    Article  CAS  Google Scholar 

  • MacDonald A.D. (1966). Microwave Breakdown in Gases. John Wiley & Sons, New York

    Google Scholar 

  • Micic O.I., Sprague J., Lu Z. and Nozik J., (1996). Appl. Phys. Lett. 73: 3150

    Article  Google Scholar 

  • Monticone S., Tufeu R. and Kanaev A.V., (1998). J. Phys. Chem. B 102: 2854–2862

    Article  CAS  Google Scholar 

  • Néel L., (1949). Comt. Rend. 228: 664

    Google Scholar 

  • Roth P. 2000, private communication

  • Sun C.Q., Chen T.P., Tay B.K., Li S., Huang H., Zhang Y.B., Pan L.K., Lau S.P. and Sun X.W., (2001). J. Phys. D: 34: 3470–3479

    Article  CAS  Google Scholar 

  • Vollath D. and Sickafus K.E., (1992). NanoStructured Materials 1: 427

    Article  CAS  Google Scholar 

  • Vollath D., (1994). Mat. Res. Soc. Symp. Proc. 347: 629

    CAS  Google Scholar 

  • Vollath D. and Szabó D.V., (1994). NanoStructured Materials 4: 927

    Article  CAS  Google Scholar 

  • Vollath, D., D.V. Szabó & B. Seith, 1998. German Patent DE19638601C1

  • Vollath, D. & D.V. Szabó, 2002. In: K.L. Choy, ed. Innovative Processing of Films and Nanocrystalline Powders. Imperial College Press, London

  • Vollath D., Lamparth I. and Szabó D.V., (2002). Mat. Res. Soc. Symp. Proc. 703: V7.8.1

    Google Scholar 

  • Vollath D., Szabó D.V. and Schlabach S., (2004). J. Nanoparticle Research 6: 181

    Article  CAS  Google Scholar 

  • Ziemann P.J., Kittelson D.B. and McMurry P.H., (1996). J. Aerosol Sci. 27 (4): 587

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Vollath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollath, D., Szabó, D.V. The Microwave plasma process – a versatile process to synthesise nanoparticulate materials. J Nanopart Res 8, 417–428 (2006). https://doi.org/10.1007/s11051-005-9014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9014-0

Key words

Navigation