Journal of Nanoparticle Research

, Volume 8, Issue 3–4, pp 417–428 | Cite as

The Microwave plasma process – a versatile process to synthesise nanoparticulate materials

  • Dieter Vollath
  • D. Vinga Szabó


The microwave plasma process inherently produces nanoparticulate powders with very narrow particle size distribution. During synthesis, the particles carry electric charges of equal sign. Therefore, by electrostatic repulsion, particle growth is reduced and agglomeration thwarted. This is shown by gas kinetic considerations and experimental results. Furthermore, this process allows coating of the particles with organic or inorganic phases, reducing interaction of different particles. This makes it possible to technically exploit properties, characteristic for isolated particles. Additionally, the coating process allows the combination of different properties such as superparamagnetism and luminescence, as it is demonstrated in different examples.

Key words

nanoparticles microwave plasma luminescence superparamagnetism nanocomposite gas phase process aerosols coating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albe V., Jouanin C. and Bertho D., (1998). Phys. Rev. B 58: 4713CrossRefGoogle Scholar
  2. Brus L.E., (1984). J. Chem. Phys. 80: 4403CrossRefGoogle Scholar
  3. Fu H. and Zunger A., (1997). Phys. Rev. B 55: 1642CrossRefGoogle Scholar
  4. Jacobs, I.S. & C.P. Bean, 1963. In: Rado G.T. & Suhl H. eds. Magnetism. Academic Press, New York, 271ff pp.Google Scholar
  5. Lamparth I., Szabó D.V. and Vollath D., (2002). Marcomolecular Symposia 181: 107CrossRefGoogle Scholar
  6. MacDonald A.D. (1966). Microwave Breakdown in Gases. John Wiley & Sons, New YorkGoogle Scholar
  7. Micic O.I., Sprague J., Lu Z. and Nozik J., (1996). Appl. Phys. Lett. 73: 3150CrossRefGoogle Scholar
  8. Monticone S., Tufeu R. and Kanaev A.V., (1998). J. Phys. Chem. B 102: 2854–2862CrossRefGoogle Scholar
  9. Néel L., (1949). Comt. Rend. 228: 664Google Scholar
  10. Roth P. 2000, private communicationGoogle Scholar
  11. Sun C.Q., Chen T.P., Tay B.K., Li S., Huang H., Zhang Y.B., Pan L.K., Lau S.P. and Sun X.W., (2001). J. Phys. D: 34: 3470–3479CrossRefGoogle Scholar
  12. Vollath D. and Sickafus K.E., (1992). NanoStructured Materials 1: 427CrossRefGoogle Scholar
  13. Vollath D., (1994). Mat. Res. Soc. Symp. Proc. 347: 629Google Scholar
  14. Vollath D. and Szabó D.V., (1994). NanoStructured Materials 4: 927CrossRefGoogle Scholar
  15. Vollath, D., D.V. Szabó & B. Seith, 1998. German Patent DE19638601C1Google Scholar
  16. Vollath, D. & D.V. Szabó, 2002. In: K.L. Choy, ed. Innovative Processing of Films and Nanocrystalline Powders. Imperial College Press, LondonGoogle Scholar
  17. Vollath D., Lamparth I. and Szabó D.V., (2002). Mat. Res. Soc. Symp. Proc. 703: V7.8.1Google Scholar
  18. Vollath D., Szabó D.V. and Schlabach S., (2004). J. Nanoparticle Research 6: 181CrossRefGoogle Scholar
  19. Ziemann P.J., Kittelson D.B. and McMurry P.H., (1996). J. Aerosol Sci. 27 (4): 587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.NanoConsultingStutenseeGermany
  2. 2.Forschungszentrum KarlsruheInstitut für Materialforschung IIIKarlsruheGermany

Personalised recommendations