Optical Properties of Zinc Oxide Nano-particles Embedded in Dielectric Medium for UV region: Numerical Simulation



Zinc oxide nano-particles have been used by cosmetic industry for many years because they are extensively used as agents to attenuate (absorb and/or scatter) the ultraviolet radiation. In the most UV-attenuating agent is formulated in which the metal oxide nano-particles are incorporated into liquid media or polymer media are manufactured, such as sunscreens and skin care cosmetics. In this paper we study the wavelength dependence on the particle size (r eff = 10–100 nm) by solving the scattering problem of hexagonal ZnO particle for different shapes (plate, equal ratio, column) using the discrete dipole approximation method to find the absorption, scattering, and extinction efficiencies for the UV region (30–400 nm). A new modified hexagonal shape is introduced to determine the scattering problem and it is assumed in this study that the wavelength is comparable to the particle size. From these results, we conclude that the optimum particle radius to block the UV radiation is between r eff = 40–80 nm.


ZnO nanoparticle optical properties DDA method hexagonal ZnO modelling and simulation 


  1. Borns M. and Wolf E. (1980). Principle of Optics.. Pergamon Press, OxfordGoogle Scholar
  2. Conway J.H. and Sloane N.J.A. (1999). Sphere Packings, Lattices and Group. Springer-Verlag, New YorkGoogle Scholar
  3. Dakhel A.A. (2001). Optical constants of evaporated gadolinium oxide. J. Opt. A: Pure Appl. Opt. 3: 452–454CrossRefGoogle Scholar
  4. Dakhel A.A. (2003). Structure, refractive index dispersion and optical absorption properties of evaporated Zn–Eu oxide films. Mater. Chem. Phys. 81: 56–62CrossRefGoogle Scholar
  5. Hopkins T. (1995). The Parallel Iterative Methods (PIM) package for the solution of systems of linear equations on parallel computers. Appl. Num. Maths. 19: 33–50CrossRefGoogle Scholar
  6. Draine B.T. (1998). The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333: 848–872CrossRefGoogle Scholar
  7. Dranie B.T. (2000). The discrete-dipole approximation for light scattering by irregular targets. In: Mishchenko, M.I., Hovenier, J.W. and Travis, L.D. (eds) Light scattering by Nonspherical Particles: Theroy, Measurements, and Geophysical Applications, pp 131–145. Academic Press, N.Y.Google Scholar
  8. Draine B.T., 2004a. Princeton University Observatory, Princeton NJ, 08544–1001 and Flatau P.J., University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California 92093–0221, USA. Program DDSCAT6.1Google Scholar
  9. Draine B.T. & P.J. Flatau, 2004b. User Guide for the Discrete Dipole Approximation Code DDSCAT.6.1. http://arxiv.org/abs/astro-ph/xxx
  10. Draine B.T. and Flatau P.J. (1994). The discrete dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11: 1491–1499CrossRefGoogle Scholar
  11. Draine B.T. and Goodman J. (1993). Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys. J. 405: 685–697CrossRefGoogle Scholar
  12. Dulub O., Boatner L.A. and Diebold U. (2002). STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001′)-O, (101′0), and (112′0) surfaces. Surf. Sci. 519: 201–217CrossRefGoogle Scholar
  13. Fairhurst D. & M.A. Mitchnick, 1997. In: Lowe N.J., Shaath N.A. and Pathak M.A. eds. Sunscreens; Development, Evaluation, and Regulatory Aspects. 2nd edn. Marcel Dekker, New York, p. 313Google Scholar
  14. Flatau P.J. (1997). Improvements in the discrete-dipole approximation method of computing scattering and absorption. Opt. Lett. 22: 1205–1207CrossRefGoogle Scholar
  15. Forouhi A.R. & I. Bloomer, 1991. In: E.D. Palik, ed. Handbook of Optical Constants of Solids II, Calculation of optical constants n and k in the interband region. Academic Press, New York, Chapter 7, pp. 151–175Google Scholar
  16. Heavens O.S. (1991). Optical Properties of Thin Film. Dover, New YorkGoogle Scholar
  17. Jackson J.D. (1975). Classical Electrodynamics. Wiley, New York, 152Google Scholar
  18. Kim S.Y. (1996). Simultaneous determination of refractive index, extinction coefficient and void distribution of titanium dioxide thin film by optical methods. Appl. Opt. 35: 6703–6707Google Scholar
  19. Kozasa T., Blum J. and Mukai T. (1992). Optical properties of dust aggregates: I. Wavelength dependence. Astron. Astrophys. 263: 423–432Google Scholar
  20. Markel V.A., Shalaev V.A., Stechel E.B., Kim W. and Armstrong R. (1996). Small-particle composites I. Linear optical properties. Phys. Rev. B 53: 2425–2436CrossRefGoogle Scholar
  21. Meyer B. and Marx D. (2003). Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B67: 035403Google Scholar
  22. Peterson A.F., S.L. Ray, C.H. Chan, and R. Mittra, 1991. In: Sarkar T.K., ed. Application of Conjugate Gradient Method of Electromagnetics and Signal Analysis, Numerical implementation of the conjugate gradient method and the CG-FFT for electromagnetic scattering. Elsevier, New York, Ch. 5Google Scholar
  23. Petravic M. and Kuo-Petravic G. (1979). An ILUCG algorithm which minimizes in the euclidean norm. J. Computational Phys. 32: 263–269CrossRefGoogle Scholar
  24. Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T. (1986). Numerical Recipes. Cambridge University Press, CambridgeGoogle Scholar
  25. Purcell E.M. and Pennypacker C.R. (1973). Scattering and absorption of light by nonspherical dielectric grains. Ap. J. 186: 705–714CrossRefGoogle Scholar
  26. Segelstein D. (1981). The Complex Refractive Index of Water. University of Missouri, Kansas city, USAGoogle Scholar
  27. Shore R.E. (1990). Overview of radiation-induced skin cancer in humans. Int J. Radi. Biol. 57: 809–827CrossRefGoogle Scholar
  28. Swanepoel R. (1983). J. Phys. D: Appl. Phys. 10: 1214Google Scholar
  29. Hulst H.C. (1957). Light scattering by small particles. Wiley, New York Google Scholar
  30. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13: 631–644CrossRefGoogle Scholar
  31. Wood D.M. and Ashcroft N.W. (1982). Quantum size effect in the optical properties of small metallic particles. Phys. Rev. B 25: 6255–6274CrossRefGoogle Scholar
  32. Xing Z. and Hanner M.S. (1997). Light scattering by aggregate particles. Astron. Astrophys. 324: 805–820Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Physical Electronics and Photonics, Department of PhysicsGöteborg UniversityGöteborgSweden

Personalised recommendations