Journal of Nanoparticle Research

, Volume 7, Issue 6, pp 621–632 | Cite as

Modeling and Simulation of Titania Synthesis in Two-dimensional Methane–air Flames



The formation and growth of titanium dioxide nanoparticles in two-dimensional, non-premixed methane–air flames is investigated via direct numerical simulation. The simulations are performed by capturing the spatio-temporal evolution of the fluid, chemical, and particle fields. The fluid is described by the conservation of mass, momentum, and energy equations; species transport is augmented by the effects of methane–air combustion and the oxidation of titanium tetrachloride; and a nodal approximation to the general dynamic equation is used to represent the effects of nucleation, condensation and coagulation. Simulations are performed for two initial reactant concentration levels, 20% and 30% titanium tetrachloride by mass. The evolution of the temperature, chemical and particle fields as a function of space and size are presented. Results indicate that particle formation and growth is mixing limited in this study and the mean particle diameter and geometric standard deviation increase as the concentration level of the initial reactants increases. In general, high geometric standard deviations correspond to a large particle sizes.


computational fluid dynamics direct numerical simulation flame synthesis nanoparticles titania 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhtar, M.K., Vemury, S., Pratsinis, S.E. 1994Competition between TiCl4 hydrolysis and oxidation and its effect on product TiO2 powderAIChE J.4011831192CrossRefGoogle Scholar
  2. Akhtar, M.K., Xiong, Y., Pratsinis, S.E. 1991Vapor synthesis of titania powder by titanium tetrachloride oxidationAIChE J.3715611570CrossRefGoogle Scholar
  3. Biswas, P., Wu, C.Y., Zachariah, M.R., McMillin, B. 1997Characterization of iron oxide-silica nanocomposites in flames: Part II: Comparison of discrete-sectional model predictions to experimental dataJ. Mat. Res.12714723Google Scholar
  4. Bui-Pham, M. 1992Studies in Structures of Laminar Hydrocarbon FlamesUniversity of CaliforniaSan Diego, CAPh.D. DissertationGoogle Scholar
  5. Chase, M.W.J. eds. 1998NIST-JANAF Thermodynamics Tables4American Chemical Society, American Institute of Physics for the National Institute of Standards and TechnologyWashington, DC, New YorkGoogle Scholar
  6. Formenti, M., Juillet, F., Meriaudeau, P., Teichner, S.J., Vergnon, P. 1972Preparation in a Hydrogen–Oxygen Flame of Ultrafine Metal Oxide ParticlesHigy, G.M. eds. Aerosols and Atmospheric ChemistryAcademic Press, Academic PressNew York, NYGoogle Scholar
  7. Fuchs, N.A. 1964The Mechanics of AerosolsPergamonOxford, EnglandGoogle Scholar
  8. Garrick, S.C., Khakpour, M. 2004The effects of differential diffusion on nanoparticle coagulation in temporal mixing layersAerosol Sci. Technol.38851860Google Scholar
  9. Garrick, S.C., K.E.J. Lehtinen & M.R. Zachariah, 2001. Modeling and Simulation of Nanoparticle Coagulation in High Reynolds Number Incompressible Flows. In: Proc. Joint US Sections Meeting of the Combustion Institute. Oakland, CAGoogle Scholar
  10. Gelbard, F., Seinfeld, J.H. 1980Simulation of multicomponent aerosol dynamicsJ. Colloid Interface Sci.78485501Google Scholar
  11. Gelbard, F., Tambour, Y., Seinfeld, J.H. 1980Sectional representations for simulating aerosol dynamicsJ. Colloid Interface Sci.76541556CrossRefGoogle Scholar
  12. George, A.P., Murley, R.D., Place, E.R. 1973Formation of TiO2 aerosol from the combustion supported reaction of TiCl4 and O2 Symp. Faraday Soc.706377Google Scholar
  13. Givi, P., Madnia, C.K., Steinberger, C.J., Carpenter, M.H., Drummond, J.P. 1991Effects of compressibility and heat release in a high Speed reacting mixing layerCombust. Sci. Technol.783368Google Scholar
  14. Hsu, J., Mahalingam, S. 2003Performance of reduced reaction mechanisms in unsteady nonpremixed flame simulationsCombust. Theory Modeling7365382Google Scholar
  15. Hung, C.-H., Katz, J.L. 1992Formation of mixed oxide powders in flames TiO2–SiO2 J. Mat. Res.718611869Google Scholar
  16. James, S. & F.A. Jaberi, 2000. Large scale simulations of two-dimenstional nonpremixed methane jet flames. Combust. Flame. 465–487Google Scholar
  17. Johannessen, T., Pratsinis, S.E., Livbjerg, H. 2001Computational analysis of coagulation and coalescence in the flame synthesis of titania particlesPowder Technol.118242250Google Scholar
  18. Kloeden, P.E., Platen, E. 1995Numerical Solution of Stochastic Differential Equations, Vol. 23 of Applications of Mathematics, Stochastic Modelling and Applied ProbabilitySpringer-VerlagNew York, NYGoogle Scholar
  19. Kusters, K.A., Pratsinis, S.E. 1995Strategies for control of ceramic powder synthesis by gas-to-particle conversionPowder Technol.827991Google Scholar
  20. Lee, B.W., Jeong, J.I., Hwang, J.Y., Choi, M., Chung, S.H. 2001Analysis of growth of non-spherical silica particles in a counterflow diffusion flame considering chemical reactions, coagulation and coalescenceJ. Aerosol Sci.32165185Google Scholar
  21. Lehtinen, K.E.J., Zachariah, M.R. 2001Self-preserving theory for the volume distribution of particles undergoing brownian coagulationJ. Colloid Interf. Sci.242314318Google Scholar
  22. Lehtinen, K.E.J., Zachariah, M.R. 2002Energy accumulation in nanoparticle collision and coalescence processesJ. Aerosol Sci.33357368Google Scholar
  23. Libby, P.A.Williams, F.A. eds. 1994Turbulent Reacting FlowsAcademic PressLondon, UKGoogle Scholar
  24. McMurtry, P.A., Jou, W.-H., Riley, J.J., Metcalfe, R.W. 1986Direct numerical simulations of a reacting mixing layer with chemical heat releaseAIAA J.24962970CrossRefGoogle Scholar
  25. Miller, S., Garrick, S.C. 2004Nanoparticle coagulation in a planar jetAerosol Sci. Technol.387989CrossRefGoogle Scholar
  26. Modem, S., Garrick, S.C. 2003Nanoparticle concentrations in temporal mixing layers: mean and size-selected imagesJ. Visualization6333342Google Scholar
  27. Modem, S., S.C. Garrick, M.R. Zachariah & K.E.J. Lehtinen, 2002. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer. In: Proceedings of the 29th Symp. (Int.) on Combustion. The Combustion Institute, Pittsburgh, PAGoogle Scholar
  28. Moody, E.G., Collins, L.R. 2003Effect of mixing on the nucleation and growth of titania particlesAerosol Sci. Technol.37403424CrossRefGoogle Scholar
  29. Pratsinis, S.E. 1989Particle production by gas-to-particle conversion in turbulent flowsJ. Aerosol Sci.2014611464Google Scholar
  30. Pratsinis, S.E. 1998Flame aerosol synthesis of ceramic powdersProg. Energy Combust. Sci.24197219CrossRefGoogle Scholar
  31. Pratsinis, S.E., Bai, H., Biswas, P., Frenklach, M., Mastrangelo, S.V.R. 1990Kinetics of titanium (IV) chloride oxidationJ. Am. Ceram. Soc7321582162CrossRefGoogle Scholar
  32. Pratsinis, S.E., Vemury, S. 1996Particle formation in gases: A reviewPowder Technol.88267273Google Scholar
  33. Pratsinis, S.E., Zhu, W., Vemury, S. 1996The role of gas mixing in flame synthesis of titania powdersPowder Techol.868793Google Scholar
  34. Rulison, A.J., Miquel, P.F., Katz, J.L. 1996Titania and silica powders produced in a counterflow diffusion flameJ. Mater. Res.1130833089Google Scholar
  35. Seshadri, K., Peters, N. 1988Asymptotic structure and extinction of methane–air diffusion flamesCombust. Flame7323CrossRefGoogle Scholar
  36. Spicer, P., Chaoul, O., Tsantilis, S., Pratsinis, S.E. 2002Titania formation by TiCl4 gas phase oxidation, surface growth and coagulationJ. Aerosol Sci.331734Google Scholar
  37. Stark, W.J., Pratsinis, S.E. 2002Aerosol flame reactors for manufacture of nanoparticlesPower Technol.126103108Google Scholar
  38. Steinberger, C.J., Vidoni, T.J., Givi, P. 1993The compositional structure and the effects of exothermicity in a nonpremixed planar jet flameCombust. Flame94217232CrossRefGoogle Scholar
  39. Ulrich, G.D. 1971Theory of particle formation and growth in oxide synthesis flamesComb. Sci. Tech44757Google Scholar
  40. Wang G & S.C. Garrick, in press. Medeling and simulation of titania formation and growth in temporal mixing layers. J. Aerosol. Sci.Google Scholar
  41. Wegner, K., Pratsinis, S.E. 2003Nozzle-quenching process for controlled flame synthesis of titania nanoparticlesAIChE J.4916671675CrossRefGoogle Scholar
  42. Yang, G., Biswas, P. 1997Study of the sintering of nanosized titania agglomerates in flames using in situ light scattering measurementsAerosol Sci. Tech.27507521Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations